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Abstract 
The properties and characteristics of torque free gyros with rotational symmetry and 
changing moments of inertia are the subject of the subsequent discussion. It shall be 
understood that the symmetry can be expressed by the notation ( )A B=  which 
does not presuppose geometric symmetry, where A and B are the principle moments 
of inertia about x and y axes respectively. We study the case of a torque free gyro 
upon which no external torque is acting. The equations of motion are derived when 
the origin of the xyz-coordinate system coincides with the gyro’s mass center c. This 
study is useful for the satellites, which have rotational symmetry and changed inertia 
moments, the antennas and the solar power collector systems. 
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1. Introduction 

A gyro is a body of rotation which is set spinning at a large angular velocity around its 
axis of symmetry. The most important practical applications of gyros are met in devices 
for measuring the orientation or maintaining the stability of airplanes, spacecrafts and 
submarine vehicles in general. Various gyros are used as sensors in inertial guidance 
systems. Most textbooks in introductory mechanics explain the mysterious behavior of 
a spinning gyro by using Lagrange equations and severe mathematics [1] [2]. Other 
textbooks [3] [4] treat the problem of torque-induced precession of a top based on Eu-
ler equations, which are referred to the non-inertial reference frame rotating together 
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with the body. The problem of the torque free inertial rotation of a symmetrical top is 
discussed, in particular, in [5] and illustrated by a simulation computer program (free 
rotation of an axially symmetrical body) [6]. For our problem, we consider a gyro body 
with xyz-coordinate system fixed of it, such that the z-axis of the body is the axis of 
symmetry and the inertia tensor is assumed to take the form  

[ ] .
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                          (1.1) 

Here A and C are the principal moments of inertia in the x and z directions. 
The rate of change of the inertia tensor with respect to time takes the form 
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                          (1.2) 

We note that the inertia products remain zeros.  
Assume that the angular velocity of the satellite or the gyros is 

 ˆˆ ˆ ,pi q j rkω = + +                          (1.3)  

and the angular momentum is 
ˆˆ ˆ ,h Api Aq j Crk= + +                         (1.4) 

where ˆ ˆ,i j  and k̂  are the unit vectors in the ,x y  and z  directions. 
Thus the gyro’s kinetic energy of rotation becomes  

2 2 21 1 .
2 2

T h Ap Aq Crω  = ⋅ = + +                   (1.5) 

2. Equations of Motion 

Applying Euler’s equations of motion and putting the applied torque equal zero, we get  

 ( )d External torque ,
d
h
t
= ∑                      (2.1) 

( )External torque ,h h
t

ω∂
+ ∧ =

∂ ∑                  (2.2)  

0.h h
t

ω∂
+ ∧ =

∂
                          (2.3) 

For the considered problem (mentioned above) we apply the angular momentum 
principle to get 

( ) ( )d
d

Ap C A qr O
t

+ − = ,                    (2.4a) 

( ) ( )d
d

Aq A C pr O
t

+ − = ,                    (2.4b) 

( )d
d

Cr O
t

= .                          (2.4c) 
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3. Components of Angular Momentum 

The Equation (2.4c) can be integrated to give 

.Cr Const=  

We can conclude that the z-component of the angular moment is constant, that is 

.zh Const=                             (3.1) 

The angular velocity is obtained by multiplying the Equations (2.4a) by Ap  and 
(2.4b) by Aq  and adding the resulted equations, we get 

( ) ( )d d
d d

Ap Ap Aq Aq O
t t

+ = ,                    (3.2) 

2 2 2 2 .,A p A q Const+ =                        (3.3) 

that is 2 2 .A p q Const+ =  or    

.A Constνω =                            (3.4) 

where 2 2
v p qω = + .  

Thus the ν —component of angular momentum is constant 

.h Constν =                             (3.5) 

The vω  and Vh  can be shown, see Figure 1. 
For torque free axi-symmetric gyro, angular velocity ω , angular momentum h ,  
 

 
Figure 1. The angular momentum components. 
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and the gyro’s symmetry axis lie in one plane [7]. 
Since the Equations (3.1) and (3.5) represent the angular momentum components, it 

can be deduced that the nutation angle remains constant when the inertia moments 
change as it when the inertia moments does not change. 

For the components of angular velocity (3.4), we introduce the auxiliary frequency 
α  defined by 

 d
d

C A r
t A
αα −

= = ,                         (3.6) 

then 

d dC A r t
A

α −
= .                          (3.7)  

The two Equations (2.4a) and (2.4b) can be combined to yield 

 ( ) ( )
2

2
d 0

d
Ap Ap

α
+ = .                        (3.8) 

The solution of this differential equation can be obtained as 

( )1 2cosAp C Cα= + .                         (3.9) 

If the constant 2 0C = , and in order to find the value of constant 1C  we employ the 
Equation (3.5) to get 1 VC h=  and then 

cosVAp Aω α= ,                         (3.10) 

cosVp ω α= ,                          (3.11) 

sinVq ω α= ,                          (3.12) 

where d
t

o

C A r t
A

α −
= ∫ .    

We can get the ν —component of the angular velocity at any instant by using 

0 0 ,A Aν νω ω=                           (3.13) 

0 0 ,A
A
ν

ν
ωω =                            (3.14) 

where the subscript (0) refers to values of time ( )0 .t =   
The components of angular velocity can be shown, see Figure 2. 
The angular velocity component Vω  has a relative angular velocity α  in the xy- 

plane. 
Introducing a floating vcu z  coordinate system, we can express the angular velocity 

(ω ) by using the cxyz  or the vcu z  coordinate system. 
The Equations (3.11) and (3.12) show that the component Vω  and consequently 

v-axis and u-axis are perpendicular, such that u-axis rotates with a relative angular ve-
locity α  where 

.C A r
A

α −
=  

In the xy-plane, the z-component of the absolute angular velocity of v-axis is 
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Figure 2. The components of angular velocity. 

 

.Cr r
A

α+ =                             (3.15) 

We can find that, for a flattened gyro ( )C A> , the v-axis rotates faster than the 
x-axis, and for elongated gyro ( )A C>  the v-axis rotates more slowly than the x-axis. 

Thus, the vcu z  coordinate system moves with an angular velocity  

ˆˆ .V
Cv rk
A

ωΩ = +                           (3.16) 

The angular velocity ω  of the gyro body and the angular velocity Ω  of the float-
ing vcu z  coordinate system are related by 

k̂ω σ= Ω +  .                           (3.17) 

where σ  is the spin of the gyro. 

4. Euler Frequencies 

The frequency of the angular momentum remains constant since there is no external 
torque applied to the gyro [8], the direction of the angular momentum vector may be 
used to define as space-fixed coordinate axis L which assigned to Z-axis and is called 
the precession axis [9].  
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If the z-axis of the rotating vcu z  coordinate system is the symmetry axis of the gyro, 
the v-axis lies in a plane formed by the Z- and z- axes, and we write 

ˆˆ ˆVh hK A v Crkω= = + .                          (4.1) 

The nutation angle ν  is the angle between the z-axis and Z-axis where Z-axis and L 
are coincide, see Figure 3. 

The components of ω  for elongated axis symmetric gyro are obtained from the 
shape, so 

sin , cos , sin ,v V
hA h Cr h
A

ω ν ν ω ν= = =                 (4.2) 

cos .hr
C

ν=                               (4.3) 

The nutation angle remains a constant and the gyro is carry out a steady precession 
about the angular momentum vector, since 

sinVω ψ ν=                              (4.4) 
we obtain 

cos
h Cr
A A

ψ
ν

= =                            (4.5) 

cosA C A Cr h
A AC

σ ν− −
= = .                       (4.6) 

Also from the figure 
 

 
Figure 3. Euler’s angles. 
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π .
2

σ α= −                              (4.7) 

Also for the angle γ  between the z-axis and the angular velocity ω  axis, we have 

tan tanV C
r A
ωγ ν= = .                        (4.8) 

The motion of a torque free gyro with rotational symmetry and changing moment of 
inertia can be visualized by imaging a space cone and body cone as shown see Figure 4 
and Figure 5. 

We can obtain the relation between the precession and the spin as follows  

( )cos
C

A C
ψ σ

ν
=

−
  .                        (4.9) 

For the elongated gyro ( )A C>  we find that γ ν<  and σ  and ψ  have the 
same sign then the precession is direct. 

For the flattened gyro ( )A C<  we find that σ  and ψ  have the opposite signs, 
then the precession is retrograde. 

5. Conclusions 

The system (2.4) is integrated to obtain the angular velocities and the angular momentum,  
 

 
Figure 4. Space cone and body cone for an elongated gyro. 
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Figure 5. Space cone and body cone for a flattened gyro. 
 
then Euler’s angles are deduced. The motions are classified into two cases: 

1) the elongated gyro ( )A C> .  
2) the flattened gyro ( )A C< . 
For each case, we investigate the equations of motions, the precession, the nutation 

and the spin for these motions in detailed by using the analytical techniques and the il-
lustrated shapes. The obtained results can be applied on the satellites [10] with rota-
tional symmetry and changed inertia moments, the antennas [11] [12] and the solar 
power collector systems [13].  
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