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Abstract 
In the present paper, we show that there exists a unique common fixed point for four self maps in 
a fuzzy metric space where two of the maps are reciprocally continuous and the other two maps 
are z-asymptotically commuting. 
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1. Introduction 
L. Zadeh’s [1] investigation of the concept of fuzzy set in the year 1965, has led to a rich growth of fuzzy ma-
thematics. Today, it has become a well-accepted system to embrace upon uncertainties springing in numerous 
physical situations. The theory of fixed point equations is one of the extrusive basic tools to exploit various 
physical formulations. Theorems on fixed points in fuzzy mathematics are emerging with flourishing hope and 
vital certainty.  

Many authors have introduced the concept of fuzzy metric space in various ways and have shown that every 
metric induces a fuzzy metric. There have been several endeavors to formulate fixed point theorems in fuzzy 
mathematics. In 1975, Kramosil and Michalek [2] generalized the statistical metric space and defined the fuzzy 
metric space which was later modified by George and Veeramani [3] [4] by introducing the concept of conti-
nuous t-norms. Recently, many researchers [5]-[9] have enormously developed the theory by studying various 
aspects of the theory and extending the concept of fuzzy metric through applying several contractive, expansive, 
continuity and compatibility conditions on the fuzzy metric and producing different results. 

Pant [10] introduced the notion of reciprocally continuous mappings and established a fixed point theorem. S. 
N. Mishra, Nilima Sharma, S. L. Singh [11] defined z-asymptotically commuting maps in fuzzy metric spaces 
which may be seen as a comparable formulation given by Trivari-Singh [12] in metric spaces. These mappings 
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are more general than commuting and weakly commuting maps.  
The aim of this paper is to show that the self maps in a fuzzy metric space satisfying certain properties and 

inequalities possess a common fixed point which is unique. 

2. Preliminaries 
Here, we shall recall some prefaces:  

Definition 2.1 ([13]): A binary operation [ ] [ ] [ ]0,1 0,1 0,: 1∗ × →  is said to a continuous t-norm if [ ]( )0,1 ,∗  

is an abelian topological monoid with unit 1 x y z w∗ ≤ ∗  whenever x z≤  & y w≤  [ ]( ), , , 0,1x y z w∈ .  
2.1(α) Basic continuous t-norms are:  

• { }min ,a b a b=∗  (minimum t-norm) 
• a b ab∗ =  (product t-norm) 
• { }max 1,0a b a b= + −∗  (Lukasiewicz t-norm) 

• { } ( )min , if max , 1
0              otherwise

a b a b
a b

=
∗ =





 (weakest t-norm, the drastic product) 

Definition 2.2 ([3]): Let X be any non-empty set, ∗  is a continuous t-norm and M is a fuzzy set on X × X × 
(0, ∞) satisfying  
a) ( )M , , 0x y t >  
b) ( )M , , 1x y t =  ⇔ x y=  
c) ( ) ( )M , , M , ,x y t y x t=  
d) ( ) ( ) ( )M , , M , , M , ,x y t y z s x z t s∗ ≤ +  
e) ( ) ( ) ( ]M , ,. : 0 0 1, ,x y ∞ →  is continuous where , , Xx y z∈ , , 0s t >  

Here, ( )M , ,x y t  denotes the degree of nearness between x, y with respect to “t”. 
• Grabiec ([14]) had shown that ( )M , ,.x y  is non-decreasing , Xx y∀ ∈ . 

Definition 2.3 ([3]): A sequence { }nx  in a fuzzy metric space ( )X, M,∗  said to converge to Xx∈  ⇔ 
( )M , , 1nx x t →  as n →∞ . 
Definition 2.4 ([3]): A sequence { }nx  in a fuzzy metric space ( )X, M,∗  is said to be a Cauchy sequence if 

for each 0ε > , 0t > , there exists 0 Nn ∈  such that ( )M , , 1n mx x t ε> −  for all 0,n m n≥ . 
Definition 2.5 ([3]): If every Cauchy sequence in a fuzzy metric space X is convergent, then X is said to be 

complete. 
Definition 2.6 ([10]): Two self maps A and B of a fuzzy metric space ( )X,M,∗  are said to be reciprocally 

continuous on X if 
lim AB An nx x→∞ =  and lim BA Bn nx x→∞ =  

whenever { }nx  is a sequence in X such that  
lim An nx x→∞ =  and lim Bn nx x→∞ =  

for some Xx∈ . 
Definition 2.7 ([11]): Two self maps A and B of a fuzzy metric space X are said to be z-asymptotically com-

muting if and only if  

( ), ,lim AB BA 1n n nx x t→∞ =  

whenever { }nx  is a sequence in X such that  
lim A lim Bn n n nx x z→∞ →∞= =   

for some Xz∈  and 0t∀ > . 
Lemma 2.8 ([14]): Let ( )X,M,∗  be a fuzzy metric space. If there exists ( )0,1q∈  such that  
( ) ( )M , , M , ,x y qt x y t≥  for all , Xx y∈  and t > 0, then x y= . 
Succeeding the Grabiec’s approach to fuzzy contraction principle, Mishra. S. N., Nilima Sharma, Singh. S. L. 

[11] had obtained common fixed point theorem for asymptotically commuting maps in fuzzy metric spaces. 



M. Prapoorna, M. Rangamma 
 

 
305 

Theorem 2.9 ([11]): Let ( )X,M,∗  be a complete fuzzy metric space with t t t∗ ≥ , [ ]0,1t∈  and  
P,Q : X X→ . If there exist continuous maps S,T : X X→  and a constant ( )0,1k ∈  such that  

1) ST = TS 
2) {P, S} and {Q, T} are asymptotically commuting pairs 
3) ( ) ( ) ( )PT X QS X ST X⊂

 
4) ( ) ( ) ( ) ( ) ( ) ( )( )M P ,Q , M S ,T , M P ,S , M Q ,T , M P ,T , M Q ,S , 2x y kt x y t x x t y y t x y t y x tα α≥ ∗ ∗ ∗ ∗ −  

for all , Xx y∈ , t > 0 and ( )0,2α ∈  then P, Q, S, T have a unique common fixed point. 

3. Main Results 
Theorem 3.1: Let ( )X,M,∗  be a complete fuzzy metric space & ∗  be any of the continuous t-norms given 
in 2.1(α) and let A, B, S, T be self maps of X satisfying  
• The pair {A, S} is reciprocally continuous 
• The pair {B, T} is z-asymptotically commuting 
• The pairs {B, S} and {T, S} commute with each other 

• ( ) ( ) ( ){ } ( ) ( ) ( ){ }1M A ,B , M A ,T , M S ,B , max M A ,S , ,M B ,T , ,M S ,T ,
2

x y kt x y t x y t x x t y y t x y t≥ + ∗       (1) 

where , Xx y∈ , ( ), 0,1t k ∈ , then A, B, S, T have a unique common fixed point in X. 
Proof: {A, S} is reciprocally continuous: 
⇒ lim AS An nx u→∞ =  and lim SA Sn nx u→∞ =  

whenever { }nx  is a sequence in X such that  
lim An nx u→∞ =  and lim Sn nx u→∞ =  for some Xu∈                     (2) 

{B, T} is z-asymptotically commuting: 
⇒ ( )lim TB ,BT , 1n n ny y t→∞ =  

whenever { }ny  is a sequence in X such that  
lim B lim Tn n n ny y z→∞ →∞= =  for some Xz∈                         (3) 

• To prove that u z= : 
Put nx x=  and ny y=  in (1), we get 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1M A ,B , M A ,T , M S ,B , max M A ,S , ,M B ,T , ,M S ,T ,
2n n n n n n n n n n n nx y kt x y t x y t x x t y y t x y t≥ + ∗  

Letting n →∞ , we have  

( ) ( ) ( ){ } ( ) ( ) ( ){ }1M , , M , , M , , max M , , ,M , , , M , ,
2

u z kt u z t u z t u u t z z t u z t≥ + ∗  (Since from (2) and (3)) 

( ) ( ) ( ){ } ( ){ }1M , , M , , M , , max 1,1,M , ,
2

u z kt u z t u z t u z t≥ + ∗  (Since ( )M , , 1x y t x y= ⇔ = ) 

( ) ( )M , , M , , 1u z kt u z t≥ ∗  

( ) ( )M , , M , ,u z kt u z t≥  
u z⇒ =  (from lemma 2.8)                                                               (4) 

i.e., we can find a Xz∈  such that (2) and (3) holds simultaneously. 
Consider (3) 

( )lim TB ,BT , 1n n ny y t→∞ =   

( )M T ,B , 1z z t⇒ =  (Since from (3)) 
T Bz z⇒ =  (since ( )M , , 1x y t x y= ⇔ = )                                                  (5) 

• To prove that Sz z= : 
Put nx x=  and S ny y=  in (1), we get 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1M A ,BS , M A ,TS , M S ,BS , max M A ,S , ,M BS ,TS , , M S ,TS ,
2n n n n n n n n n n n nx y t x y t x y t x x t y y t x y t≥ + ∗  
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( ) ( ) ( ){ } ( ) ( ) ( ){ }1M A ,SB , M A ,ST , M S ,SB , max M A ,S , , M SB ,ST , , M S ,ST ,
2n n n n n n n n n n n nx y kt x y t x y t x x t y y t x y t≥ + ∗

 

(Since the pairs {B, S} and {S, T} commute with each other). 
Taking n →∞  on both sides, we have  

( )

( ) ( ){ } ( ) ( ) ( ){ } ( ) ( )( )

( ) ( ){ } ( ){ } ( )( )

Since from 2  and

M ,S ,
1 M ,S , M ,S , max M , , ,M S ,S , ,M ,S ,
2
1 M ,S , M ,S , max 1,1,M ,S , M , , 1
2

 3

Since

u z kt

u z t u z t u u t z z t u z t

u z t u z t u z t x y t x y

≥ + ∗

≥ + ∗ = ⇔ =

 

( ) ( )M ,S , M ,S , 1u z kt u z t≥ ∗  

( ) ( )M ,S , M ,S ,u z kt u z t≥  

Sz u⇒ =  (from lemma (2.8))  
But from (4), we get Sz z=                                                               (6) 

• To prove Bz z= : 
Put nx x=  and y z=  in (1) 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1M A ,B , M A ,T , M S ,B , max M A ,S , ,M B ,T , ,M S ,T ,
2n n n n n nx z kt x z t x z t x x t z z t x z t≥ + ∗  

Taking limit n →∞  on both sides, we get 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1M ,B , M ,T , M ,B , max M , , ,M B ,T , ,M ,T ,
2

u z kt u z t u z t u u t z z t u z t≥ + ∗  (Since from (2)) 

( ) ( ) ( ){ } ( ){ }1M ,B , M ,B , M ,B , max 1,1,M ,B ,
2

u z kt u z t u z t u z t≥ + ∗  (Since from (5)) 

( ) ( )M , B , M ,B , 1u z kt u z t≥ ∗  

( ) ( )M ,B , M ,B ,u z kt u z t≥  

∴  Bz u=  (from lemma (2.8)) 
But from (4), we get Bz z=                                                               (7) 
∴  From (5), (6) and (7) we have S B Tz z z z= = =                                            (8) 

• To prove Az z= : 
Consider 

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ){ } ( ) ( ) ( ){ } ( )( )

( ) ( ){ } ( ) ( ) ( ){ } ( )( )

( ){ } ( ){ }

M A , , M A ,B , M B , ,

M , , 1

1 M A ,T , M S ,B , max M A ,S , ,M B ,T , ,M S ,T ,
2
1 M A ,

  M A ,B , 1 from 8  

, M , , max M A , , ,M , , ,M , ,
2
1 , , 1 max , , ,

and

from

1,1

 1

Since from 8

2

z z t z z kt z z t kt

x y t x y

z z t z z t z z t z z t z z t

z z t z z t z z t z z t z z t

M Az z t M Az z t

z z kt

≥ ∗ −

= ⇔ =

≥ + ∗

∗

≥

≥ + ∗

+

∗

≥

 

( ) ( ){ }1M A , , M A , , 1 1
2

z z t z z t≥ + ∗  
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( ) ( ){ }1M A , , M A , , 1
2

z z t z z t≥ +
 

( ) ( )1 1M A , , M A , ,
2 2

z z t z z t≥ +
 

( )1 1M A , ,
2 2

z z t ≥
 

( )M A , , 1z z t ≥  
Az z∴ =                                                                         (9) 

⇒ from (8) and (9), we have A S B Tz z z z z= = = =  
∴  z is a common fixed point of A, B, S, T. 

• To prove Uniqueness of z: 
Let us assume that A, B, S, T have another common fixed point in X say p where z p≠  

i.e., A S B Tp p p p p= = = =  
Now we prove that z p= . 
Consider  

( ) ( )

( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ){ } ( ){ }
( )
( )

M , , M A ,B ,
1 M A ,T , M S , B , max M A ,S , , M B ,T , , M S ,T ,
2
1 M , , M , , max M , , , M , , , M , ,
2
1 M , , M , , max 1,1, M , ,
2
M , , 1

M , ,

z p kt z p kt

z p t z p t z z t p p t z p t

z p t z p t z z t p p t z p t

z p t z p t z p t

z p t

z p t

=

≥ + ∗

≥ + ∗

≥ + ∗

≥ ∗

≥

 

( ) ( )M , , M , ,z p kt z p t≥  

z p∴ =  (using lemma (2.8)) 
∴  There exists a unique common fixed point of A, B, S, T in X.  

Example 3.2: Let X = [0, 2], ( )
( ),

M , , e
d x y

tx y t
−

=  ( )0 1t< <  where ( ),d x y x y= −  and ∗  be the con-
tinuous t-norm given by { }min ,b ba a=∗ . 

Clearly, ( )X,M,∗  is a Complete fuzzy metric space. 

Let A = 1, 2 5B
7

x +
= , S = x, 3 1T

4
x +

=  be self maps on X. 

Let { }
N

11n
n

x
n ∈

 = − 
 

 be a sequence in X. 

( )lim S S 1An nx→∞ =  and ( )lim A 1An nx→∞ =  
lim A 1n nx→∞ =  and lim S 1n nx→∞ =  where 1 X∈ . 
⇒ A and S are reciprocally continuous. 

Let { }
N

11n
n

y
n ∈

 = + 
 

 be a sequence in X. 

( )lim TB ,BT , 1n n ny y t→∞ =  and lim B lim T 1n n n ny y→∞ →∞= =  where 1 X∈ . 
⇒ B and T are z-asymptotically commuting where z = 1. 
Also, the four maps satisfies (iii) and (iv) of theorem 3.1. 
⇒ A, B, S, T have a Unique common fixed point in X i.e., at x = 1.  
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