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Abstract 
The 2-sum of two digraphs D1  and D2 , denoted D D1 2 2⊕ , is the digraph obtained from the dis-
joint union of D1  and D2  by identifying an arc in D1  with an arc in D2 . A digraph D is supe-
reulerian if D contains a spanning eulerian subdigraph. It has been noted that the 2-sum of two 
supereulerian (or even hamiltonian) digraphs may not be supereulerian. We obtain several suffi-
cient conditions on D1  and D2  for D D1 2 2⊕  to be supereulerian. In particular, we show that if 
D1  and D2  are symmetrically connected or partially symmetric, then D D1 2 2⊕  is supereule-

rian. 
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1. Introduction 
We consider finite graphs and digraphs, and undefined terms and notations will follow [1] for graphs and [2] for 
digraphs. Throughout this paper, the notation ( ),u v  denotes an arc oriented from u to v. A digraph D is strict if 
it contains no parallel arcs nor loops; and is symmetric if for any vertices u, ( )v V D∈ , if ( ) ( ),u v A D∈ , then 
( ) ( ),v u A D∈ . If two arcs of D have a common vertex, we say that these two arcs are adjacent in D. A directed 
path in a digraph D from a vertex u to a vertex v is called a ( ),u v -dipath. To emphasize the distinction between 
graphs and digraphs, a directed cycle or path in a digraph is often referred as a dicycle or dipath. A dipath P is a 
hamiltonian dipath if ( ) ( )V P V D= . A digraph D is hamiltonian if D contains a hamiltonian dicycle. An 
( ),x y -hamiltonian dipath is a hamiltonian dipath from x to y. A digraph D is hamiltonian-connected if D has an 
( ),x y -hamiltonian dipath for every choice of distinct vertices ( ),x y V D∈ . 

As in [2], ( )Dλ  denotes the arc-strong-connectivity of D. A digraph D is strong if and only if ( ) 1Dλ ≥ . 
For ( ),X Y V D⊆ , we define  
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( ) ( ) ( ){ } ( ) ( )( ), , : and ; and , .DD D
X Y x y A D x X y Y X X V D X+= ∈ ∈ ∈ ∂ = −  

For a subset ( )A A D′ ⊆ , the subdigraph arc-induced by A′  is the digraph [ ] ( ),D A V A′ ′ ′= , where V ′  is 
the set of vertices in V which are incident with at least one arc in A′ . 

Let  

( ) ( ) ( ) ( ), and .D D D Dd X X d X X+ + − −= ∂ = ∂  

When { }X v= , we write ( ) { }D Dd v v+ += ∂  and ( ) { }D Dd v v− −= ∂ . Let ( ) ( ) ( ) ( ){ }: ,DN v u V D v v u A D+ = ∈ − ∈  
and ( ) ( ) ( ) ( ){ }: ,DN v u V D v u v A D− = ∈ − ∈  denote the out-neighbourhood and in-neighbourhood of v in D, 
respectively. Vertices in ( )DN v+ , ( )DN v−  are called the out-neighbours, in-neighbours of v. Thus for a digraph 
D and an integer 0k ≥ ,  

( ) ( ) ( )if and only if for any with , .DD k W W V D W kλ +≥ ∅ ≠ ⊂ ∂ ≥              (1) 

Boesch, Suffel, and Tindell [3] in 1977 proposed the supereulerian problem, which seeks to characterize graphs 
that have spanning eulerian subgraphs. They indicated that this problem would be very difficult. Pulleyblank [4] 
later in 1979 proved that determining whether a graph is supereulerian, even within planar graphs, is NP- 
complete. Catlin [5] in 1992 presented the first survey on supereulerian graphs. Chen et al. [6] surveyed the 
reduction method associated with the supereulerian problem and their applications. An updated survey 
presenting the more recent developments can be found in [7].  

It is natural to consider the supereulerian problem in digraphs. A digraph D is eulerian if it contains a closed 
ditrail W such that ( ) ( )A W A D= , or, equivalently, if D is strong and for any ( )v V D∈ , ( ) ( )D Dd v d v+ −= . A 
digraph D is supereulerian if D contains a closed ditrail W such that ( ) ( )V W V D= , or, equivalently, if D 
contains a spanning eulerian subdigraph. Some recent developments on supereulerian digraphs are given in 
[8]-[12]. 

A central problem is to determine or characterize supereulerian digraphs. In Section 2, the 2-sum 1 2 2D D⊕  
of two digraphs 1D  and 2D  is defined, and some basic properties of 2-sums are discussed. We will observe 
that a 2-sum of two supereulerian (or even hamiltonian) digraphs may not be supereulerian. Thus it is natural to 
seek sufficient conditions on 1D  and 2D  for the 2-sum of 1D  and 2D  to be supereulerian. In the last 
section, we will present several sufficient conditions for supereulerian 2-sums of digraphs. In particular, we 
show that if 1D  and 2D  are either symmetrically connected or partially symmetric (to be defined in Section 
3), then 1 2 2D D⊕  is supereulerian. 

2. The 2-Sums of Digraphs  
The definition and some elementary properties of the 2-sums of digraphs are presented in this section. A digraph 
is nontrivial if it contains at least one arc. Throughout this section, all digraphs are assumed to be nontrivial. 

Definition 2.1 Let 1D  and 2D  be two vertex disjoint digraphs, and let ( ) ( )1 11 12 1,a v v A D= ∈  and 
( ) ( )2 21 22 2,a v v A D= ∈  be two distinguished arcs. The 2-sum 

1 21 , 2a aD D⊕  of 1D  and 2D  with base arcs 
1a  and 2a  is obtained from the union of 1D  and 2 2D a−  by identifying 11v  with 21v  and 12v  with 22v , 

respectively. When the arcs 1a  and 2a  are not emphasized or is understood from the context, we often use 
1 2 2D D⊕  for 

1 21 , 2a aD D⊕ .  
Lemma 1 Let 1D  and 2D  be two vertex disjoint strong digraphs. Then  

( ) ( ) ( ){ }1 2 2 1 2min , .D D D Dλ λ λ⊕ ≥  

Proof. Let 0k ≥  be an integer such that ( ) ( ){ }1 2min ,D D kλ λ = , and let ( )1 2 2D D kλ ′⊕ = . We shall 
show that k k′ ≥ . By (1), there exists a proper nonempty vertex subset ( )1 2 2X V D D⊂ ⊕  such that 

( )
1 2 2D D X k+
⊕ ′∂ = . Let ( )

1 2 2D DS X+
⊕= ∂ . We argue by contradiction and assume that k k′ < . 

By Definition 2.1, we have ( )11 21 2v v V D= ∈  and ( )12 22 2v v V D= ∈  in 1 2 2D D⊕ . If ( )1X V D∩ ≠ ∅  
and ( )2X V D∩ =∅ , we obtain that 11 21v v X= ∉  and 12 22v v X= ∉ , then ( )1X V D⊂  and ( )

1DS X+= ∂ . 
It follows by (1) that ( )1k S D kλ′ = ≥ ≥ , contrary to the assumption that k k′ < . Similarly, if ( )1X V D∩ =∅  
and ( )2X V D∩ ≠ ∅ , then ( )2X V D⊂  and ( )

2DS X+= ∂ , hence a contradiction to the assumption that 
k k′ <  is obtained from ( )2k S D kλ′ = ≥ ≥ . 
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Thus, we may assume that ( )1X V D∩ ≠ ∅  and ( )2X V D∩ ≠ ∅ . Let ( )1X X V D′ = ∩ . Then X ′  is a 
proper nonempty subset of ( )1V D , and ( )

1D X S+ ′∂ ⊆ . It follows by (1) that ( ) ( )
1 1Dk S X D kλ+′ ′= ≥ ∂ ≥ ≥  

contrary to the assumption that k k′ < .  
Example 2.1 The converse of Lemma 1 may not always stand, as indicated by the example below, depicted in 

Figure 1. Let ( ) { }1 11 12 13 14, , ,V D v v v v=  and ( ) { }2 21 22 23 24, , ,V D v v v v= . Let  
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 11 12 13 12 14 13 11 14 11 13 14 12, , , , , , , , , , ,A D v v v v v v v v v v v v=  and  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 21 22 22 23 23 24 24 21 23 21 24 22, , , , , , , , , , ,A D v v v v v v v v v v v v= . Let ( )1 11 12,a v v=  and ( )2 21 22,a v v= .  
Then, it is routine to verify that ( )1 21 , 2 1a aD Dλ ⊕ ≥ . While 2D  is strong, the digraph 1D  contains a vertex  

11v  with ( )
1 11 0Dd v− = , and so ( )1 0Dλ = .  

Lemma 2 A digraph D is not supereulerian if for some integer 0m > , ( )V D  has vertex disjoint subsets 
{ }1, , , mB B B  satisfying both of the following:  

i) ( ) { }, 1, 2, , .D iN B B i m− ⊆ ∀ ∈ 
  

ii) ( ) 1D B m−∂ ≤ − .  

Proof. By contradiction, we assume that both i) and ii) hold and D is supereulerian. Let S be a spanning 
eulerian subdigraph of D, then ( ) ( )B V S V D⊂ =  and ( ) ( )A S A D⊂ . Since S is eulerian, for any subset 

( )X V S⊂ , it follows that ( ) ( )S SX X+ −∂ = ∂ . Thus, by ii), we conclude that  

( ) ( ) ( ) ( ) ( ) 1.D D DB A S B A S B m+ − −∂ ∩ = ∂ ∩ ≤ ∂ ≤ −                     (2) 

By i) and by (2), there must be a jB  with { }1, 2, ,j m∈   such that ( ) ( )D jB A S−∂ ∩ = ∅ , contrary to the 
assumption that ( ) ( )V S V D= .  

Lemma 2 can be applied to find examples of hamiltonian digraphs whose 2-sum is not supereulerian, as 
shown in Example 2.2 below. 

Example 2.2 Let 1 2, 3n n ≥  be integers and 
1nC  and 

2nC  be two vertex disjoint dicycles with length 1n  
and 2n , respectively. We claim that 

1 22n nC C⊕  is not supereulerian. To justify this claim, we denote 
( ) { }1 111 12 1, , ,n nV C v v v=  , and ( ) { }2 221 22 2, , ,n nV C v v v=  . Without loss of generality, we assume that 
( )1 11 12,a v v=  and ( )2 21 22,a v v= , and 

1 2 1 1 2 22 ,n n n a a nC C C C⊕ = ⊕ . Let 1,B B  and 2B  be subdigraphs of 
1 22n nC C⊕  with ( ) { }12V B v= , ( ) { }1 13V B v=  and ( ) { }2 23V B v= , respectively. By Lemma 2, we conclude 

that 
1 22n nC C⊕  is not supereulerian (see Figure 2).  

3. Sufficient Conditions for Supereulerian 2-Sums of Digraphs  
In this section, we will show several sufficient conditions on 1D  and 2D  to assure that the 2-sum 1 2 2D D⊕   
 

 
Figure 1. ( )1 2 2 1D Dλ ⊕ =  but min ( ) ( )1 2{ ,  } 0D Dλ λ = . 

 

 
Figure 2. The 2-sum 

1 22n nC C⊕  of 
1nC  and 

2nC .        
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is supereulerian. 
Proposition 1 Let 1D  and 2D  be two vertex disjoint supereulerian digraphs with ( ) ( )1 11 12 1,a v v A D= ∈  

and ( ) ( )2 21 22 2,a v v A D= ∈ , and let 1 2 2D D⊕  denote 
1 21 , 2a aD D⊕ . Each of the following holds.  

i) For some { }1, 2i∈ , if iD  has a spanning eulerian subdigraph iS  such that ( )i ia A S∉ , then 1 2 2D D⊕  
is supereulerian.  

ii) If for some { }1, 2i∈ , iD  is hamiltonian-connected, then 1 2 2D D⊕  is supereulerian.  
Proof. i) Since 1D  and 2D  are supereulerian digraphs, 1D  and 2D  are strongly connected, and so by 

Lemma 1, 1 2 2D D⊕  is also strongly connected. Without loss of generality, we assume that 1i =  and 1D  has 
a spanning eulerian subdigraph 1S  such that ( )1 1a A S∉ . Since 2D  is supereulerian, we can pick a spanning 
eulerian subdigraph 2S ′  in 2D . Then ( ) ( )1 2A S A S ′∩ = ∅  and ( ) ( )1 2V S V S ′∩ ≠ ∅ . It follows that 

( ) ( )1 2D A S A S ′∪    is a spanning eulerian subdigraph in 1 2 2D D⊕ .  
ii) Without loss of generality, we assume that 1i =  and 1D  is hamiltonian-connected, and so 1D  has a 

( )11 12,v v -hamiltonian dipath 1T  and a ( )12 11,v v -hamiltonian dipath 2T . Since 2D  is supereulerian, 2D  
contains a spanning eulerian subdigraph 2S ′ . Define  

( ) ( ){ }( ) ( ) ( )

( ) ( ){ }( ) ( ) ( ) ( )
1 2 21 22 21 22 2

2 11 12 2 21 22 2

, if ,
.

, if ,

D A T A S v v v v A S
S

D A T v v A S v v A S

  ′ ′∪ − ∈  = 
 ′ ′∪ ∪ ∉  

 

As in any case, S is strongly connected and every vertex ( )v V S∈  satisfies ( ) ( )S Sd v d v+ −= , and so S is 
eulerian. Since ( ) ( ) ( ) ( ) ( )2 1 2iV S V T V S V D V D′= ∪ = ∪ , for { }1, 2i∈ , we conclude that S is a spanning 
eulerian subdigraph of 1 2 2D D⊕ , and so 1 2 2D D⊕  is supereulerian.  

Theorem 2 [13] If a strict digraph on 3n ≥  vertices has ( )21 1n − +  or more arcs, then it is hamiltonian- 
connected.  

Corollary 1 Let 1D  be a strict digraph on 1 3n ≥  vertices and with ( ) ( )2
1 1 1 1A D n≥ − + . If 2D  is a 

supereulerian digraph, then 1 2 2D D⊕  is supereulerian.  
Proof. By Theorem 2, 1D  is hamiltonian-connected. Then by Proposition 1 (ii), 1 2 2D D⊕  is supereulerian.  
Two classes of supereulerian digraphs seem to be of particular interests in studying supereulerian digraph 2- 

sums. We first present their definitions. 
Definition 3.2 Let D be a digraph such that either 1D K=  or ( )A D ≠ ∅ . If for any ( ),u v V D∈ , D 

contains a symmetric dipath from u to v, then D is called a symmetrically connected digraph.  
Given a digraph D, define a relation ~ on ( )V D  such that ~u v  if and only if u v=  or D has a 

symmetrically connected subdigraph H with ( ),u v V H∈ . By definition, one can routinely verify that ~ is an 
equivalence relation. Each equivalence class induces a symmetrically connected component of D. Hence D is 
symmetrically connected if and only if D has only one symmetrically connected component. A symmetrically 
connected component of D is also called a maximal symmetrically connected subdigraph of D. When D has 
more than one symmetrically connected components, we have the following definition. 

Definition 3.3 Let D be a weakly connected digraph and { }1 2, , , cH H H  be the set of maximal symmetrically 
connected subdigraphs of D with 2c ≥ . If for any proper nonempty subset { }1 2, , , cH H H⊂  ,  

( )
( ) ( ) ( ) ( )

there exist an , a vertex , and an such that

and ,
i i j

D j D j

H v V H H

N v V H N v V H+ −

∈ ∈ ∉

∩ ≠ ∅ ∩ ≠ ∅

 
                (3) 

then D is partially symmetric.  
It is known that both symmetrically connected digraphs and partially symmetric digraphs are supereulerian. 
Theorem 3 ([14] and [15]) Each of the following holds.  
i) Every symmetrically connected digraph is supereulerian.  
ii) Every partially symmetric digraph is supereulerian.  
A main result of this section is to show that the digraph 2-sums of symmetrically connected or partially 

symmetric digraphs are supereulerian. 
Lemma 3 Let 1D  and 2D  be two vertex disjoint digraphs with ( ) ( )1 11 12 1,a v v A D= ∈  and  

( ) ( )2 21 22 2,a v v A D= ∈ , and let 1 2 2D D⊕  denote 
1 21 , 2a aD D⊕ . Each of the following holds.  

i) If 1D  and 2D  are symmetrically connected, then 1 2 2D D⊕  is symmetrically connected.  
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ii) If 1D  and 2D  are partially symmetric, then 1 2 2D D⊕  is partially symmetric.  
iii) If 1D  is symmetric and 2D  is partially symmetric, then 1 2 2D D⊕  is partially symmetric.  
Proof. i) For any vertices ( )1 2 2,x y V D D∈ ⊕ , we shall show that 1 2 2D D⊕  always has a symmetric ( ), -x y

dipath. If for some { }1, 2i∈ , we have ( ), ix y V D∈ , then as iD  is symmetrically connected, iD  contains a 
symmetric ( ),x y -dipath P. Since iD  is a subdigraph of 1 2 2D D⊕ , P is also a symmetric ( ),x y -dipath of 

1 2 2D D⊕ . Hence we may assume that ( )1x V D∈  and ( )2y V D∈ . Since 1D  and 2D  are symmetrically 
connected, 1D  contains a symmetric ( )11,x v -dipath 1P  and 2D  contains a symmetric ( )21,v y -dipath 2P . 
By Definition 2.1, 11v  and 21v  represent the same vertex in 1 2 2D D⊕ , and so ( ) ( )1 2 2 1 2D D A P A P⊕ ∪    is 
a symmetric ( ),x y -dipath in 1 2 2D D⊕ .  

ii) Fix { }1, 2i∈ . Since iD  is partially symmetric, for some integer 1ic > , let { }1 2, , ,
ii i icH H H′ ′ ′

  be the 
set of all maximal symmetrically connected subdigraphs of iD . Without loss of generality, we assume that 

( )11 11v V H ′∈  and ( )21 21v V H ′∈ ; and for some ,s t  with 11 s c≤ ≤  and 21 t c≤ ≤ , ( )12 1sv V H ′∈  and 
( )22 2tv V H ′∈ . (We allow the possibility that 1s =  and/or 1t = ). Define, for 11 h c≤ ≤  and 21 j c≤ ≤ ,      

{ } { }1 2

1 11 21 2 11 21

1 2 1 2

if 1, if 1,
if 1 and if 1 .
if if

h j

h j

s t s t

H h s H j t
H H H h H H H j

H H h s H H j t

′ ′∉ ∉ 
 ′ ′ ′ ′= ∪ = = ∪ = 
 ′ ′ ′ ′∪ = ∪ = 

 

Then, { }1 211 12 1 21 22 2, , , , , , ,c cH H H H H H=    is the set of all maximal symmetrically connected sub- 
digraphs of 1 2 2D D⊕ . Note that 11 21H H=  and 1 2s tH H= . We shall show by definition that 1 2 2D D⊕  is 
partially symmetric. To do that, let   be a nonempty proper subset of  . We shall show that (3) holds. 

Since { }1 211 12 1 21 22 2, , , , , , ,c cH H H H H H=   , we either have { }111 12 1, , , cH H H∩ ≠ ∅  or  

{ }221 22 2, , , cH H H∩ ≠ ∅ . By symmetry, we may assume that { }111 12 1, , , cH H H∩ ≠ ∅ . 

Suppose first that { }111 12 1, , , cH H H − ≠ ∅  . Let { }1 1|h hH H′ ′= ∈  . Then  

{ }111 12 1, , , cH H H′ ′ ′ ′− ≠ ∅  . Since 1D  is partially symmetric, there exist an 
01hH ′ ′∈ , a vertex ( )01hv V H ′∈ , 

and an { }0 11 11 12 1, , ,j cH H H H′ ′ ′ ′ ′∈ −   such that  

( ) ( ) ( ) ( )1 0 1 01 1and .D j D jN v V H N v V H+ −′ ′∩ ≠ ∅ ∩ ≠ ∅  

This implies that the vertex ( )01hv V H∈ , 
01hH ∈ , and 

01 jH ∉  such that  

( ) ( ) ( ) ( )1 2 2 0 1 2 2 01 1and .D D j D D jN v V H N v V H+ −
⊕ ⊕∩ ≠ ∅ ∩ ≠ ∅  

Thus (3) holds in this case. 
Hence we may assume that { }111 12 1, , , cH H H ⊂  . Since   is a proper subset, we must have 

{ }221 22 2, , , cH H H − ≠ ∅  . Since 21 11H H= ∈ , we also have { }221 22 2, , , cH H H ∩ ≠ ∅  . With a 
similar argument, we conclude that (3) must also hold in this case.  

iii) Let 0 1H D=  and let { }1 2, , , cH H H′ ′ ′
  be the set of all maximal symmetrically connected subdigraphs of 

2D  with ( )21 1v V H ′∈  and for some { }1, 2, ,j c∈  , ( )22 jv V H ′∈ . (We allow the possibility that 1j = ). 
Define  

{ }
1 0 if 1 or

.
if 1,

j
i

i

H H H i i j
H

H i j
′ ′∪ ∪ = =

=  ′ ∉
 

Then { }1 2, , , cH H H=   is the set of all maximal symmetrically connected subdigraphs of 1 2 2D D⊕ . 
Note that 1 jH H=  with this notation. Let   be a nonempty proper subset of  . We shall show that (3) 
holds. 

Let { }|i iJ H H′ ′= ∈ . Since   is proper, ′  is a nonempty proper subset of { }1 2, , , cH H H′ ′ ′
 . Since 

2D  is partially symmetric, by Definition 3.2, there exist an 
0i

H ′ ′∈ , a vertex ( )0i
v V H ′∈ , and an 

{ }
0 1 2, , ,j cH H H H′ ′ ′ ′ ′∈ −   such that 

( ) ( ) ( ) ( )1 0 1 0
and .D j D jN v V H N v V H+ −′ ′∩ ≠ ∅ ∩ ≠ ∅  
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This implies that vertex ( )0i
v V H∈ , 

0i
H ∈  and 

0j
H ∉  such that  

( ) ( ) ( ) ( )1 2 2 0 1 2 2 0
and .D D j D D jN v V H N v V H+ −

⊕ ⊕∩ ≠ ∅ ∩ ≠ ∅  

Thus (3) holds, and so by definition, 1 2 2D D⊕  is partially symmetric.  
Theorem 4 Let 1D  and 2D  be two digraphs. Each of the following holds.  
i) If 1D  and 2D  are symmetrically connected, then 1 2 2D D⊕  is supereulerian.  
ii) If 1D  and 2D  are partially symmetric, then 1 2 2D D⊕  is supereulerian.  
iii) If 1D  is symmetric and 2D  is partially symmetric, then 1 2 2D D⊕  is supereulerian.  
Proof. This follows from Theorem 3 and Lemma 3.  
It is also natural to consider sufficient conditions on 1D  and 2D  for 1 2 2D D⊕  to be hamiltonian. 
Theorem 5 If 1D  is hamiltonian and 2D  is hamiltonian-connected digraphs, then 1 2 2D D⊕  is 

hamiltonian.  
Proof. Let ( ) { }11 11 12 1, , , nV D v v v=   with 

111 12 1 11nC v v v v= 
 be a hamiltonian dicycle of 1D  and 

( ) { }22 21 22 2, , , nV D v v v=  . Let ( ) ( )1 11 12 1,a v v A D= ∈  and ( ) ( )2 21 22 2,a v v A D= ∈ , and 
1 21 2 2 1 , 2a aD D D D⊕ = ⊕ . 

Since 2D  is hamiltonian-connected, 2D  contains a ( )21 22,v v -hamiltonian dipath P. Thus { }( )1C a P− ∪  is a 
hamiltonian dicycle in 1 2 2D D⊕ .  

Theorem 6 (Thomassen [16]) If a semicomplete digraph D is 4-strong, then D is hamiltonian-connected.  
By Theorem 5 and 6, we have the following corollary.  
Corollary 2 Let 1D  and 2D  be two 4-strong semicomplete digraphs, then 1 2 2D D⊕  is hamiltonian.  
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