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Abstract 
The present paper, a theoretical analysis of steady fully developed flow and heat transfer of two 
immiscible magneto hydrodynamic and viscous fluid, partially filled with porous matrix and par-
tially with clear fluid bounded by two vertical plates, has been discussed, when both the plates are 
moving in opposite directions. The plates are maintained at unequal temperatures. The Brink-
man-extended Darcy model has described the momentum transfer in a porous medium. The effect 
of various parameters and Darcy number are discussed in the flow field and the temperature pro-
files numerically and are expressed by graphs. The non-dimensional governing momentum and 
energy equations are analytically solved by applying the homotopy perturbation technique and 
the method of ordinary differential equation. It is observed that magnetic parameter (M) has a re-
tarding effect on the main flow velocity and is to enhance the temperature distribution, whereas 
the reversal phenomenon occurs for the Darcy dissipation parameter (Da). The skin-friction 
component has also been determined and is presented with the help of a table. The magnetic pa-
rameter (M) reduces the skin friction coefficient for clear fluid region and is to increase the skin 
friction coefficient for porous region. It is also evident from table that getting bigger the width of 
the clear fluid layer increases the skin friction. The skin friction coefficient on both the plates 
(comparing at y = 0 and at y = 1 for A or B) increases when those are heated. 
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1. Introduction 
The convective flow and heat transfer of electrically conducting fluid in the channel have been an important re-
search topic for the last few decades under the influence of magnetic field because of its applications in magne-
to-hydrodynamics (MHD) power generators, solar technology, the dispersion of metals, application in fusion 
reactors, aerodynamic heating, petroleum industry, crude oil purification, fluid droplet sprays and many more. 
Many relevant, pertinent studies have been reported as Hartmann [1] who discussed the effect of magnetic field 
on the flow field in the channel when both of the walls are electrically insulated. Rossow [2] obtained exact so-
lution of Navier-Stokes equations and Maxwell’s equation for the special case when the ratio of magnetic Rey-
nold number and the viscosity is one. Such types of above research problems are extended with an external 
magnetic field and comprehensive reviewed by Helliwell [3], Attia and Kotb [4], Malathy and Srinivas [5], 
Singh et al. [6]. All these above pertain to one-fluid flow problems.  

Heat transfer aspects associated with flow systems comprising multi layer flow in a region, part of which is 
occupied by porous matrix and part by clear fluid under the effect of transverse magnetic field, have a pivotal 
importance due to its wide range of applications in both geophysical and industrial environments, including such 
as thermal energy storage system, flow and heat transfer behavior of lubricants in a porous journal bearings and 
porous rollers, oil recovery, groundwater hydrology, petroleum reservoir engineering and many others in which 
a porous matrix is set up adjacent to clear fluid.  

The comprehensive view of technological point in above fluid mechanics, some slip of the fluid over the flu-
id-porous boundary may occur so slip velocity ought to be found in empirical way. A series of work has been 
investigated on the problem of immiscible fluid. Beavers and Joseph [7] reported that the velocity gradient on 
the fluid side of the interface is proportional to the slip velocity at the interface. Taylor [8] and Richardson [9] 
extended the investigation of fluid flow by Darcy number. Degen et al. [10] studied the two-layer system with 
time dependent pattern. Lohrasbi and Sahai [11] analyzed the effect of MHD heat transfer in parallel plates 
when one phase of layers is conducted. Further, Vafai and Kim [12] dealt with porous region using the so-called 
Brinkman-Forchheimer-extended Darcy equation. Vafai and Kim [13], Kuznetsov [14], Alazmi and Vafai [15], 
Valencia-Lopez and Ochoa Tapia [16], Malashetty and Leela [17] and Umavathi et al. [18]-[20] reportd the sub-
stantial work on interfacial fluid problems with porous layers using different parameters and boundary condi-
tions. 

Furthermore, the study of fully developed forced convection in porous matrix is applied and in progressed by 
Vafai and Tien [21], Kaviany [22] who expressed theoretical and analytic solution of Brinkman-Darcy model. 
Comprehensive study in this area is made by Nield and Bejan [23] and presented the convection and heat flux in 
porous media with the effects of solid boundaries and inertial forces on flow and heat transfer in porous medium. 
Alkam et al. [24] investigated the convection and heat flux in channels with two porous layers attached to the 
walls. Rudraiah & Nagraj [25], Kaviany [26] and Backermann et al. [27] discussed analytically the free convec-
tion flow of interfacial fluid of two parallel plates filled a pot with a Darcy porous layer. Singh et al. [28] pre-
sented an analytical solution of Brinkman-Forchheimer equations-extended Darcy model, which shows the ef-
fect of Brinkman (shear), and Forchheimer (inertia) in the porous drenched fluid. Khalili et al. [29] governed the 
flow by Darcy-Forchheimer equation and hence applied into superposed fluid and porous layers with vertical 
through-flow. Umavathi et al. [30] have presented analytical and theoretical solutions for unsteady two compo-
site fluid flows and heat flux transfer in a horizontal channel. Stamenkovic [31] carried out the pioneer work in 
the study of MHD flow of immiscible, electrically conducting fluids between isothermal and insulated moving 
plates in the presence of an inclined magnetic field. Gupta et al. [32] described the viscous and Darcy dissipa-
tion effect on flow field through vertical plates partially filled with porous matrix when both the plates are mov-
ing in opposite directions. Simon and Shagaiya [33] observed the convective flow of two immiscible fluid and 
heat transfer with porous media along an inclined channel with pressure gradient. Mateen [34] considered the 
effect of magnetic field and ratio of viscosity on the flow and the temperature of two immiscible fluids through 
horizontal channel. He [35], [36] and Biazar and Ghazvini [37] perceived the solution of non-linear coupled eq-
uations by homotopy perturbation technique. 

The proposed study of MHD multi fluid flow and heat transfer are through two vertical plates partially filled 
with porous matrix when both the plates are moving in opposite directions. 

2. Mathematical Analysis 
Consider a channel of an incompressible, viscous, steady and electrically conducting MHD multi fluid flow past 
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between two vertical plates partially filled with porous media and partially with a clear fluid having an interface 
is discussed, when both the plates are moving in opposite directions and one plate is heated and the other is 
cooled. The x  axis is taken along one of the plate and y  axis normal to it and the applied magnetic field βo 
along the y  axis. The electrical field owing to the polarization of charges and Hall effect is taken negligible. 
However, the effect of Julian heat dissipation is incorporated. The velocity of the plate in the clear fluid region 
and the velocity of the plate in the porous region is fu  and pu  respectively.  

( ) ( )andf c h c p c h cT T A T T T T B T T= + − = + −  are the temperature of the plates situated at 0y =  and 

y L=  respectively. 
Under Bousinesque approximation, the flow of clear fluid and porous medium is governed by the following 

equations: 
Clear Fluid Region: 
(a) Momentum equation  

( )
2 2

2

d
0

d
f f

f c

u o ug T T
y

σββ
ν ν

+ − − =                                 (1) 

(b) Energy equation  

( )
2 2 22
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d d

f f
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u o uK T T
y y
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 
+ − + = 
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                               (2) 

Pore Fluid Region:  
(a) Momentum equation  

( )
2 2

2

d
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d
p p p
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(b) Energy equation  
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                         (4) 

The corresponding boundary conditions are [boundary at interface y d=  is defined by Kim and Russel [38]]: 

( ) ( )
2

0 , at 0,h c
f f c h c

g L T T
u T T A T T y

β
ν
−

= = + − =


 

( ) ( )
2
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g L T T
u T T B T T y L

β
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−

= = + − =
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d d d
, , , ,

d d d d
f p f p

f p f p

u du T T
y d u u T T

y y y y
= = = = =                       (5) 

Introducing dimensions by using the following transformation: 

( )2 2, , ,p f
f

h c

K uy dDa y u d
L LL g L T T

ν
β

= = = =
−

 

( )2 , ,p f c p c
p f p
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u T T T T
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θ θ
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− −−
 

And  

( )2 2 4 2 2
2

uβ ,h cg L T T o LM
K

β σβ
ν ν

−
= =                            (6) 

So Equation (1) to Equation (4) become:  
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where 22
1

1M M
Da

= +  

The Brinkman-extended Darcy law (Darcy [39] governs the momentum transfer of permeable domain). 
The boundary conditions on velocity are no-slip conditions requiring that the velocity must be same as that at 

the plate. In addition, to maintain the continuity of velocity, shear stress, temperature and heat flux at the inter-
face is assumed so boundary conditions (5) in non-dimension form are: 

0

0

0 : ,
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                           (11) 

where pK  the permeability of porosity, Da the Darcy parameter, K the thermal conductivity, M the magnetic 
parameter (Hartmann number), βu the Buoyancy parameter, β the coefficient of thermal expansion, μ is the vis-
cosity, β0 is the magnetic field intensity, σ is the electric conductivity, d is the distance of interface from the 
plate y = 0, ʋ is kinematic viscosity, g the acceleration due to gravity, θ is the temperature at any point of the 
fluid flow. L is the distance of vertical plates, u the dynamic velocity, U0 the velocity of the plate. A is the plate 
temperature at y = 0 and B is the plate temperature at y = 1. The subscripts f represents a clear fluid layer, p por-
ous layer, h hot plate and c the cool plate.  

Solutions: 
It is observed that above governing equations are coupled non-linear. Accordingly, we assume for small but 

(1), a very small Buoyancy parameter in most of the practical problems: 

( )
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                            (12) 

Substituting the Equation (12) into the Equations (7)-(10), we have: 
2
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The corresponding boundary conditions are: 

0 0 1 0 1
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                        (21) 

Solving Equations (15) and (19) using boundary conditions (21) gives the following temperature component: 

( )0 0f p A B A yθ θ= = + −                                  (22) 

Now solving Equations (13) and (17) by the homotopy perturbation technique with boundary conditions (21), 
construct homotopy (He [34], [36] and Biazar [37]): 

( ) ( ) ( ) ( )0 0 0 0 0f fi fi fH L u L u P L u N u faj = − + + − =                       (23) 

( ) ( ) ( ) ( )0 0 0 0 0p pi fi pH L u L u P L u N u faj = − + + − =                       (24) 

where ( ) ( ) ( ) ( )0 0 0 0, and ,f p f pL u L u N u N u  is the linear term of 0 fu  and 0 pu  and Non-Linear term of 0 fu  

and 0 pu  respectively and 0 fiu , 0 piu  is the initial value of 0 0,f pu u . 
Let  

( )2
0 00 01f f fu u Pu O P= + +                                (25) 

( )2
0 00 01p p pu u Pu O P= + +                                (26) 

Boundaries and matching conditions are:  

0 0 00 0 01, , 0 at  0f f fu u u y= = = =   

0 0 00 0 01, , 0 at 1p p pu u u y= − = − = =   

0 0 00 00 01 01, , at f p f p f pu u u u u u y d= = = =  

And 
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0 0 00 00 01 01d d d d d d
, , at

d d d d d d
f p f p f pu u u u u u

y d
y y y y y y

= = = =                     (27) 

Then the solution of Equations (13) and (17): 

( )
0 1 2 2e eMy My

f
A B A y

u C C
M

− + −
= + +                             (28) 

( )
1 1

2
1

0 3 4e eM y M y
p

A B A y
u C C

M
− + −

= + +                            (29) 

With the help of a solution of Equations (22), (27) and (28), (29), we get the solution of Equations (14), (16), 
(18), and (20): 
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The constants are dropped for the sake of brevity. 

3. Skin Friction Coefficient 
The numerical values of Skin-friction are exposed in Table 1 for U0 = 0.4. τ1, τ2 is the skin friction when A = 1, 
B = 0 and A = 0, B = 1 respectively. It is evident from Table that getting bigger the width of the clear fluid layer 
increases the skin friction. It is also analyzed that skin friction on both the plates increases when those are heated. 
The influence of Hartmann number (M) is to suppress the skin friction for clear fluid region and is to enhance 
the skin friction for porous medium. 

4. Result and Discussion 
In order to mull over the configuration of magneto-hydrodynamic two-phase flow in vertical plates, channels 
partially filled with porous substrate when plates are moving in opposite directions has been discussed. The 
closed form of solutions of nonlinear-coupled momentum and energy equations have been analytically obtained 
by the homotopy perturbation technique and the solutions of ordinary differential equation method. The findings  
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Table 1. Skin friction coefficient.                                                                              

βu M Da d 

A = 1 B = 0 A = 0 B = 1 

τ1 τ2 

uf up uf up 

0 1 0.1 
0.5 −0.5013 1.5671 −0.6714 1.7053 

0.7 −0.4909 1.5702 −0.6591 1.7116 

0 1.5 0.1 
0.5 −0.6078 1.6118 −0.7738 1.7485 

0.7 −0.6013 1.6613 −0.7655 1.7509 

0 1 0.01 
0.5 −0.5170 4.0395 −0.6908 4.1185 

0.7 −0.3656 4.0741 −0.5442 4.1529 

0 1.5 0.01 
0.5 −0.6167 4.0633 −0.7862 4.1420 

0.7 −0.4973 4.0928 −0.6644 4.1715 

0.1 1 0.1 
0.5 −0.4906 1.5684 −0.6565 1.7035 

0.7 −0.4789 1.5717 −0.6411 1.7097 

0.1 1.5 0.1 
0.5 −0.6060 1.6139 −0.7654 1.7495 

0.7 −0.5993 1.6236 −0.7566 1.7521 

0.1 1 0.01 
0.5 −0.5063 4.0400 −0.6724 4.1190 

0.7 −0.3514 4.0746 −0.5256 4.1534 

0.1 1.5 0.01 
0.5 −0.6157 4.0638 −0.7779 4.1425 

0.7 −0.4898 4.0934 −0.6565 4.1721 

 
are presented graphically and discussed in detail. The velocity distribution (zeroth and first order) and tempera-
ture distribution (only first order) are depicted in the figures. The zeroth order temperature profile is not shown 
since it is linear. The effect of Darcy dissipation and joule dissipation is taken into account. There domains are 
viewed such as clear fluid domain (near y = 0), interface domain (at y = d) and pore domain (near the plate y = 
1). 

The zeroth order velocity profile flow is plotted in Figure 1 and Figure 2. It is seen that with the increasing 
Darcy number (Da) the flow velocity (magnitude) increases in the clear fluid region and shows the same effect 
in the pore region, which is perfectly attached to the plate moving in opposite directions. It is so for the reason 
that Darcian drag force in the attached porous substrate impedance is reduced and thus the flow is accelerated in 
it. The zeroth order velocity shows the constant nature near the interface in porous media for low Darcy number 
(Da = 0.001) and the effect of Brinkman term is almost none so classical Darcy law is dominated. It is important 
to note that the velocity does not depict the constant nature of the interface with moderately increasing value of 
Darcy number (Da = 0.01). Figure 1 and Figure 2 also exhibit the fluid velocity at the hand of the clear fluid 
heated plate (y = 0, A = 1, B = 0) is more than the cold plate (y = 0, A = 0, B = 1). On the other hand, it is said 
that the fluid velocity near of porous heated plate (y = 1, A = 0, B = 1) is less than the cold plate (y = 1, A = 0, B 
= 0). It is due to considerable fact that the temperature coupled with resistance offered by the porous matrix. 

Figure 1 displays the effect of magnetic parameter (M) on the velocity (magnitude) field, the figure makes 
known commonly that the velocity decreases with increasing M, signifies the increases of resistive type force 
(Lorentz force) which tends to retard the fluid flow velocity in the clear fluid region, interface, and porous re-
gion. It is noteworthy to the outlook that magnetic interaction with low Darcy parameter (Da = 0.001) does not 
contribute a lot to affect fluid flow in porous media. Figure 3 depicts the variation in zeroth order fluid velocity 
with variable magnetic field on a scale Darcy number (Da = 0.01 and Da = 0.001, when d = 0) for only porous 
fluid domain. 
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Figure 1. Graph of zeroth order velocity U0 against y.                             

 

 
Figure 2. Zeroth order velocity against y.                                     
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Figure 3. Zeroth order velocity against y.                                     

 
Figure 4 of first order velocity portrays the dependence of first order velocity with the distance y between the 

plates that shows the very small effect of first order velocity because of its nonlinear term existence. Fluid ve-
locity increases with distance y and get maximum velocity in between y = 0 to y = d for clear fluid flow region. 
The reason for this behavior is free flow of liquid between in the plate (y = 0) and interface (clear-porous y = d) 
and the fluid is in contact with the interface boundary (clear-porous y=d) which induces the resistive effect at the 
boundary. The fluid motion is not free due to the presence of the porous substrate between y = d to y = 1. The 
obstacles due to porosity reverse the fluid velocity which causes the fluid velocity decreases to attain very small 
value at y = 1. It may be noted that decreasing the Darcy number the fluid velocity decreases and attains a very 
low velocity, which is also acceptable, physically in very small value of Darcy number (Da = 0.001). Figure 5 
depicts the variation in first order fluid velocity on a very small scale Darcy number (Da = 0.001). Figure 4 also 
shows that increasing the strength of the magnetic field the decay of fluid flow is greater in all regions. It is so 
because the retarding effect of magnetic field. 

Figure 6 and Figure 7 illustrate the similar behavior of temperature dependence against y by changing the 
width of free fluid flow in the region y = 0 to y = d and in porous media from y = d to y = 1. These figures also 
indicate that temperature of liquid in the free flow region is maximum when d is small and reverse behavior can 
be noted in a porous substrate for both of the Darcy parameters Da = 0.01 and Da = 0.001. 

Figure 8 shows the temperature variation of liquid with distance y between the plates when plates A and B are 
heated. It is showing a sign of the temperature distribution of fluid decreases when near the plate of porous ma-
trix is heated. This is due to the fact that heat supplied by plate B attached to the porous regime is absorbed by 
the porous substrate and less transition of heat flow between the plates giving decline the temperature profile in 
all regions. Similar behavior is shown in Figure 9 for Da = 0.001. 

Figure 10 and Figure 11 depict the similar behavior of variation of fluid temperature against the distance y. It 
is noted that by decreasing the permeability of porous substrate the temperature profile increases. These figures 
conclude the considerable effect of non-linear term, and signify the viscous and Darcy dissipation. It is interest-
ing to conclude that temperature difference profile between the plates become more or less flat over most of the 
plates because the very less transition of temperature between the plates giving mount thermal boundary layer 
flow adjacent to both of the plates for very low Darcy parameter like 0.001 which leads to viscous dissipation 
and Darcy dissipation. The flattening in temperature variation is due to decreases in Darcy parameter, which 
causes the Darcy drag force. 

Figure 12 reveals the variation of the temperature profile of liquid with the distance between the plate and in-
dicates that as the velocity of plates are increasing the Darcy dissipation increases which causes increases the 
temperature profile of fluid.  

Figures 13-15 represent the temperature profile in the boundary layer and momentum of various value of 
Hartmann number (M). It is encountered from these figures that temperature distribution increases in thermal  
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Figure 4. First order velocity against v.                                                                   

 

 
Figure 5. First order velocity against y.                                                                     
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Figure 6. Temperature against y.                                                

 

 
Figure 7. Temperature against y.                                              
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Figure 8. Temperature against y.                                                 

 

 
Figure 9. Temperature against y.                                               
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Figure 10. Temperature against y.                                               

 

 
Figure 11. Temperature against y.                                               
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Figure 12. Temperature against y.                                               

 

 
Figure 13. Temperature against y.                                               
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Figure 14. Temperature against y.                                               

 

 
Figure 15. Temperature against y.                                               
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boundary layer adjacent to the plates with growing the Hartmann number (M) for both of the Darcy parameters 
(0.01, 0.001). It is attributed to the fact that kinetic energy lost from the fluid flow due to the magnetic field ef-
fect is manifested as joule (ohmic) heating so Hartmann contributed significantly in generation of temperature. 
Temperature profile remains almost constant with increasing the value of Hartmann number (M) in porous me-
dia and it is greater in the clear fluid in close proximity to the plate. Therefore, it is imperative to conclude that 
magnetic parameter associated with Darcy parameter fails to contribute much temperature distribution in mo-
mentum. It is interesting to note of these figures that giving raises to temperature in the flow field either A or B 
exists. 

5. Conclusions 
1) Presence of magnetic field (M) decreases the velocity (magnitude) of flow field in the clear and porous fluid 

region. It is so as a retarding effect of Lorentz force.  
2) Velocity (magnitude) of fluid falls in whole region with decreasing Darcy parameter (Da). 
3) Temperature coupled with Darcy parameter decelerates the motion flow and decreases the temperature pro-

file of fluid. 
4) Inclusion of magnetic field with Darcy parameter is the beneficial gaining temperature in the thermal boun-

dary layer adjacent to the plates. 
5) Low Darcy number enhances the temperature distribution near the plates. 
6) Shear stress on both of the plates (y = 0 and y = 1) increases due to increasing the width of the clear fluid 

layer. 
7) The skin friction decreases with the increasing Hartmann number (M) in clear fluid, but the reversal effect 

shows in a porous medium and skin friction on both the plates ( comparing at y = 0 and at y = 1 for A or B) 
increases when those are heated. 

8) Giving raises to temperature in the flow field either A or B exists. 
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