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Abstract 
We considerer parabolic partial differential equations  

( ) ( )t x x
w w r x t,− =  

under the conditions  
( ) ( ) ( ) ( )1 1 1 2, ,x xw a t k t w b t k t= =  

( ) ( ) ( ) ( )2 1 2 2, ,w x a h t w x b h t= =  

on a region ( ) ( )E a b a b1 1 2 2, ,= × . We will see that we can write the equation in partial derivatives 
as an Fredholm integral equation of first kind and will solve this latter with the techniques of 
inverse moments problem. We will find an approximated solution and bounds for the error of 
the estimated solution using the techniques on moments problem. Also we consider the one- 
dimensional one-phase inverse Stefan problem. 

 
Keywords 
Parabolic PDEs, Freholm Integral Equations, Generalized Moment Problem 

 
 

1. Introduction 
We considerer parabolic partial differential equation of the form: 

( ) ( ),t x x
w w r x t− =                                         (1) 
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where the unknown function ( ),w x t  is defined in ( ) ( )1 1 2 2, ,E a b a b= × . ( ),r x t  is known function. We 
consider conditions 

( ) ( ) ( ) ( )1 1 1 2, ,x xw a t k t w b t k t= =  

( ) ( ) ( ) ( )2 1 2 2, , .w x a h t w x b h t= =  

This problem was studied under conditions of Cauchy in [1]. 
Parabolic differential equations are commonly used in the fields of engineering and science for simulating 

physical processes. These equations describe various processes in viscous fluid flow, filtration of liquids, gas 
dynamics, heat conduction, elasticity, biological species, chemical reactions, environmental pollution, etc. [2] 
[3]. 

In a variety of cases, approximations are used to convert parabolic PDEs to ordinary differential equations or 
even to algebraic equations. The existence and uniqueness properties of this problem are presented in literature. 
Several numerical methods have been proposed for the solution of this problem [4]-[6]. 

Next section is devoted to showing how the differential equation (1) is transformed into integral equation of 
first kind that can be seen as generalized moments problem. In Section 3 there we present a theorem that 
guarantees under certain conditions the stability and convergence of the finite generalized moment problem. In 
Section 4 we exemplify the general method by applying it to some parabolic PDEs of the form (1). Finally in 
Section 5 the method is applied to solve the one-dimensional one-phase inverse Stefan problem. 

The Stefan problem consists of finding w y s such that 

( ) ( ){ }
2

2 in , ; 0 ; 0w w x t x s t t
t x

∂ ∂
= < < >

∂ ∂
 

( ) ( )0, 0w t f t t
x

∂
− = >
∂

 

( )( ), 0 0w s t t t= >  

( )( )d , 0
d
s w s t t t
t x

∂
= − >

∂
 

( ) ( )0, 0 0w x w x x= ≥  

( )0 .s a=  

The classical Stefan problem is a nonlinear initial value problem with a moving boundary whose position is 
unknown a priori and it must be determined as part of the solution. The differential equations of parabolic type 
governing heat diffusion with phase change are an important class of Stefan problems. 

The direct Stefan problem requires determining both the temperature and the moving boundary interface 
when the initial and boundary conditions, and the thermal properties of the heat conducting body are known. 
Conversely, inverse Stefan problems require determining the initial and/or boundary conditions, and/or thermal 
properties from additional information which may involve the partial knowledge or measurement of the moving 
boundary interface position, its velocity in a normal direction, or the temperature at selected interior thermo- 
couples of the domain. 

In this paper we solve the inverse Stefan problem: find ( )f t  with ( )s t  known such that the above con- 
ditions are met. 

The d-dimensional generalized moment problem [7]-[10] can be posed as follows: find a function u on a 
domain dΩ ⊂ R  satisfying the sequence of equations 

( ) ( )dn nu x g x x nµ
Ω

= ∈∫ N                                  (2) 

where ( )ng  is a given sequence of functions lying in ( )2 ΩL  linearly independent. 
Many inverse problems can be formulated as an integral equation of the first kind, namely, 

( ) ( ) ( ) ( ), d , .
b

a
K x y u y y f x x a b= ∈∫  
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( ),K x y  and ( )f x  are given functions and ( )u y  is a solution to be determined; ( )f x  is a result of 
experimental measurements and hence is given only at finite set of points. It follows that the above integral 
equation is equivalent to the following moment problem 

( ) ( ) ( ), d 1,2, .
b

n na
K x y u y y f x n= =∫   

Also we considerer the multidimensional moment problems 

( ) ( ) ( ), d 1,2, , .d
n nK x y u y y f x n

Ω
= = Ω ⊂∫ R  

Moment problems are usually ill-posed. There are various methods of constructing regularized solutions, that 
is, a approximate solution stable with respect to the given data. One of them is the method of truncated expan- 
sion. 

The method of truncated expansion consists in approximating (2) by finite moment problems 

( ) ( )d 1,2, , .i iu x g x x i nµ
Ω

= =∫                                (3) 

Solved in the subspace 1 2, , , ng g g  generated by 1 2, , , ng g g  (3) is stable. Considering the case where 
the data ( )1 2, , , nµ µ µ µ=   are inexact, we apply some convergence theorems and error estimates for the 
regularized solutions [9] [11]. 

2. Parabolic Partial Differential Equations as Integral Equations of First Kind 
Let ( )( ) ( ), ,F w x t r x t=  be a partial differential equations such as (1). The solution ( ),w x t  is defined on the 
region ( ) ( )1 1 2 2, ,E a b a b= ×  and verifies conditiones on the boundary C E= ∂ : 

( ) ( ) ( ) ( )1 1 1 2, ,x xw a t k t w b t k t= =  

( ) ( ) ( ) ( )2 1 2 2, , .w x a h t w x b h t= =  

We apply the technique used in [1]. Let ( ) ( )( )1 2,F F w F w∗ =  be a vectorial field such that w verifies  
( ) ( )div F h w∗ ∗=  with h∗  a known function and, reciprocally, if w verifies ( ) ( )div F h w∗ ∗=  then  

( )( ) ( ), , .F w x t r x t=  
Specifically in this case ( )( ) ( ), t x x

F w x t w w= −  and we take 

( ) ( )( ) ( )1 2, ,xF F w F w w w∗ = = −                              (4) 

( ) ( ), .h w r x t∗ = −                                          (5) 

Let ( ), , ,u x t τ ξ  be the auxiliary function 

( )
1

π, , , e cos .t xu x t
b

ξτ ξ τ−  
=  

 
                                (6) 

Since 

( ) ( )udiv F uh w∗ ∗=  

we have 

( ) ( )d d .
E E
udiv F A uh w A∗ ∗=∫∫ ∫∫  

Moreover, as 

( ) ( )udiv F div uF F u∗ ∗ ∗= − ⋅∇  

and 

( ) ( )
( ) d

d d d

C

E E E

uF n s

udiv F A div uF A F u A
∗

∗ ∗ ∗

= ⋅∫

= − ⋅∇∫∫ ∫∫ ∫∫

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we obtain 
( ) ( )d d d

E C E
uh w A uF n s F u A∗ ∗ ∗= ⋅ − ⋅∇∫∫ ∫ ∫∫                            (7) 

where ( ), .u u uτ ξ∇ =  
We consider the integral 

1 2d d .
E E
F u A F u F u Aτ ξ

∗ ⋅∇ = +∫∫ ∫∫                              (8) 

Integrating by parts: 

( ) ( ) ( ) ( )( )

( )

2 1 2

2 1 2

2 1

2 1

1 1 1 1 1 1d d d , , , , , , , , d

, d d .

b b b

E a a a

b b

a a

F u A F u w b u x t b w a u x t a

w u

τ τ τ τ

ττ

τ ξ ξ ξ ξ ξ ξ

τ ξ τ ξ

= = −

−

∫∫ ∫ ∫ ∫

∫ ∫
            (9) 

Note that in (9) if x is a natural number then 

( )1 1
1 1

π π, , , e sin 0t x xu x t b b
b b

ξ
τ ξ −  

= − = 
 

                          (10) 

and if 1 0a =  then 

( )1 1
1 1

π π, , , e sin 0.t x xu x t a a
b b

ξ
τ ξ −  

= − = 
 

                          (11) 

Thus if x N∈  and 1 0a = :  

( ) 2 1

2 1

2

1

πd d d .
b b

E E a a

xF udA wu wu A wu t
bττ ξ τ ξ∗

   ⋅∇ = − − = − +    
∫∫ ∫∫ ∫ ∫              (12) 

Also if we write 1 2 3 4C E C C C C= ∂ =     (see Figure 1) then 

( ) ( ) ( ) ( ) ( )
1 2 3 4

d d d d d
C C C C C

uF n s uF n s uF n s uF n s uF n s∗ ∗ ∗ ∗ ∗⋅ = ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫  

( ) ( ) ( )
( )

1

1 1

1

2 2d , , , , d
b

C a
h

uF n s u x t a w a
τ

τ τ τ∗ ⋅ =∫ ∫


 

( ) ( ) ( )
( )

1

3 1

2

2 2d , , , , d
b

C a
h

uF n s u x t b w b
τ

τ τ τ∗ ⋅ = −∫ ∫


 

( ) ( ) ( )
( )

2

2 2

2

1 1d , , , , d
b

C a
k

uF n s u x t b w bτ

ξ

ξ ξ ξ∗ ⋅ =∫ ∫


 

( ) ( ) ( )
( )

2

4 2

1

1 1d , , , , d .
b

C a
k

uF n s u x t a w aτ

ξ

ξ ξ ξ∗ ⋅ = −∫ ∫


 

 

 
Figure 1. Domain E and contour E C∂ = .              
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We write 
( ) ( ) ( ) ( ) ( )

1 2 3 4
, d d d d

C C C C
G x t uF n s uF n s uF n s uF n s∗ ∗ ∗ ∗= ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫  

( ) ( ) ( ), , , , , d
E

R x t r u x t Aτ ξ τ ξ= ∫∫  

finally, if x N∈  y 1 0a =  we get: 

( ) ( ) ( ) ( ) ( )2 1

2 1 2

1

, ,
, , , , d d , .

π

b b

a a

G x t R x t
w u x t x t

x t
b

τ ξ τ ξ τ ξ ϕ
−

= =
   +    

∫ ∫                   (13) 

If ( ){ }2 2, 0;E a bτ ξ τ ξ= ≥ ≤ ≤  then you can take 

( ) ( ), , , e costu x t xξτ ξ τ−=                                  (14) 

and we must have ( ), 0w τ ξ →  when .τ → ∞  

3. Solution of Generalized Moment Problems 
Equation (13) is of the form: 

( ) ( ) ( )1 2

1 2
, , , , d d , .

b b

a a
w K x t x tτ ξ τ ξ τ ξ ϕ=∫ ∫  

We assign natural values to x and t: , 0,1, ,x i i m= =   and , 0,1, ,t j j n= =   and we consider the corre- 
sponding generalized finite moment problem bi-dimensional [12] [13] 

( ) ( ) ( )1 2

1 2
, , d d , 0,1, , 0,1, , .

b b
ij ija a

w K i j i m j nτ ξ τ ξ τ ξ ϕ µ= = = =∫ ∫    

To obtain a numerical approximation of the solution ( ),w τ ξ  the truncated expansion method is applied [9] 
[11]. 

We considerer the basis ( ){ } 0
,i i

φ τ ξ
∞

=
 obtained from the sequence ( ){ },ijK τ ξ  with 0,1, , ;i m=    

0,1, ,j n= 
 by Gram-Schmidt method and addition of the necessary functions in order to have an orthonormal 

basis. 
To facilitate the calculations we write ( ){ } 0

,
r

i i
K τ ξ

=
 and { } 0

r
i i

µ
=

 with .r m n= ⋅  

We then approximate the solution ( ),w τ ξ  with 

( ) ( )
0

, ,
r

r i i
i

p τ ξ λφ τ ξ
=

= ∑  

and 

0
0,1, ,

i

i ij j
j

C i rλ µ
=

= =∑   

where the coefficients ijC  verifies 

( ) ( ) ( )
( )

( )
1 1

2

, | ,
1 , 1 ; 1

,

i
i k

ij kj i
k j k

K
C C i r j i

τ ξ φ τ ξ
φ τ ξ

φ τ ξ

− −

=

 
 = − ⋅ < ≤ ≤ <
 
 
∑                (15) 

( ) 1
, 0,1, , .ii iC i rφ τ ξ

−
= = 

                               (16) 

The proof of the following theorem is in [14]. 
Theorem 1. Let { } 0

r
m m

µ
=

 be a set of real numbers and let ε  and E be two positive numbers such that 

( ) ( )2 1

2 1

2
2

0
, , d d

r b b
m ma a

m
K wτ ξ τ ξ τ ξ µ ε

=

− ≤∑ ∫ ∫                            (17) 

( ) ( )2 1

2 1

2 22 2 2
1 1 2 2 d d

b b

a a
b a w b a w Eτ ξ τ ξ − + − ≤ ∫ ∫                         (18) 
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then 

( )
( )

2 1

2 1

2
2 T 2

2, d d min ; 0,1, ,
8 1

b b

a a m

Ew CC m r
m

τ ξ τ ξ ε
  ≤ + = 

+  
∫ ∫                     (19) 

where C is the triangular matriz with elements ijC  ( )1 ;1i r j i< ≤ ≤ < . 
And 

( ) ( )
( )

2 1

2 1

2
2 T 2

2, , d d .
8 1

b b
ra a

Ep w CC
r

τ ξ τ ξ τ ξ ε− ≤ +
+

∫ ∫                         (20) 

If ( ) ( )1 2, ,E a a= ∞ × ∞ , then (18) it is replaced by 

[ ]
2 1

2 2 2Exp d d
a a

w w Eτ ξτ ξ τ ξ τ ξ
∞ ∞

 + + ≤ ∫ ∫  

and we must have 
( ), 0 if for allmw m Nτ τ ξ τ→ →∞ ∈  

and 
( ), 0 if for all .nw n Nξ τ ξ ξ→ →∞ ∈  

4. Numerical Examples 
4.1. Example 1 
Let considerer the equation 

0t xxw w− =  
in the domain ( ) ( )0, 2 0, 2E = ×  and boundary condition on E∂  given by 

( ) ( ) ( )0, e 2, cos 2 et t
x xw t w t− −= =  

( ) ( ) ( ) ( ) 2,0 sin , 2 sin e .w x x w x x −= =  

The exact solution is ( ) ( ), sin e .tw x t x −=  
In Figure 2 the approximate numerical solution and the exact one are compared. 
Were taken 9r =  moments. 

 

 
Figure 2. ( ) ( ), sin e tw x t x −=  and ( )9 ,p x t .                                
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The accuracy is, in this case ( ) ( )2 2 2
90 0

, , d d 0.0361472.p x t w x t x t− =∫ ∫  

4.2. Example 2 
Let considerer the equation 

34e t x
t xxw w − +− = −  

in the domain ( ) ( )0,1 0,E = × ∞  and boundary condition on E∂  given by 

( ) ( )3 1 30, e 1, et t
x xw t w t− −= =  

( ),0 e .xw x =  

The exact solution is ( ) 3, e .x tw x t −=  
In Figure 3 the approximate numerical solution and the exact one are compared. 
Were taken 9r =  moments. 
To apply Gram Schmidt to ( ){ },ijK τ ξ  we consider the inner product  

( ) ( ) ( ) ( )1

1 2
, , , , , e d d .

b
i j i ja a

f f f f ξτ ξ τ ξ τ ξ τ ξ ξ τ
∞ −= ∫ ∫  

The accuracy is, with this inner product ( ) ( ) 2
9 , , 0.0250523.p x t w x t− =  

5. The One-Dimensional One-Phase Inverse Stefan Problem 
5.1. The Inverse One-Phase Stefan Problem as Integral Equation 
The Stefan problem consists of finding w y s such that 

( ) ( ){ }
2

2 in , ; 0 ; 0w w x t x s t t
t x

∂ ∂
= < < >

∂ ∂
                      (21) 

( ) ( )0, 0w t f t t
x

∂
− = >
∂

                                   (22) 

( )( ), 0 0w s t t t= >                                       (23) 
 

 
Figure 3. ( ) 3, ex tw x t −=  and ( )9 ,p x t .                                              
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( )( )d , 0
d
s w s t t t
t x

∂
= − >

∂
                                  (24) 

( ) ( )0, 0 0w x w x x= ≥                                     (25) 

( )0 .s a=                                                   (26) 

We want to solve the inverse Stefan problem: to find ( )f t  with ( )s t  known such that the above con- 
ditions are met. 

We write 

( ) 0.w wξ τ τ
− =                                      (27) 

We take the auxiliary function 

( ) ( ) ( )1, , , e cos .tu x t xξτ ξ τ− +=  

Therefore 

( )
2

2
2 1 .u uu x u u t uττ ξξτ

∂ ∂
= = = = − +

∂∂
 

We consider the vector field ( ) ( ) ( )( )1 2,F w F w F w∗ =  with ( ) ( )1 2,F w w F w wτ= = − . In this manner 
( )( )div F w w wττ ξ

∗ = − . In consequence if w it is solution of the Equation (27), then ( )( ) 0div F w∗ = . Reci-  
procally, if w satisfies ( )( ) 0div F w∗ = , then w it is solution of the Equation (27). 

We write ( ) ( ){ }, ;0 ; 0E sτ ξ τ ξ ξ= < < > . We use that  

( ) ( )div uF udiv F F u∗ ∗ ∗= − ⋅∇  

if ⋅  it is the scalar product and ∇  is the gradient operator we get  

( ) ( )d d d .
E E E
udiv F A div uF A F u A∗ ∗ ∗= − ⋅∇∫∫ ∫∫ ∫∫  

By the divergence theorem  

( ) ( )d d
E C
div uF A uF n s∗ ∗= ⋅∫∫ ∫  

with C E= ∂ , in consequence  

( ) ( )d d d .
E C E
udiv F A uF n s F u A∗ ∗ ∗= ⋅ − ⋅∇∫∫ ∫ ∫∫  

We calculate d
E
F u A∗ ⋅∇∫∫ : 

First we write 

( ) ( )1 2 1 2, ,F u F F u u F u F uτ ξ τ ξ
∗ ⋅∇ = ⋅ = +  

and ( ) ( ){ }, ;0 ;0TE s Tτ ξ τ ξ ξ= < < < < , (Figure 4) then we take T →∞ . 
If ( ) ( )1 1 dpF w F w wτ= =∫  then 

( )

( )( )( ) ( )( ) ( ) ( ) ( )

1 10 0

1 1 10 0 0

d d d

, , , , 0, , ,0, d d d .

T

T s

E

T T sp p p

F u A F u

F w s u x t s F u x t u F

ξ
τ τ

ξ
τ τ ττ

τ ξ

ξ ξ ξ ξ ξ ξ ξ τ ξ

=

 = − − 

∫∫ ∫ ∫

∫ ∫ ∫
 

As ( )( ), 0w s ξ ξ =  by (23) and ( ) ( ) ( )1, , 0, sin 0 e 0tu x t x x ξ
τ ξ − += ⋅ =  then 

( ) ( ) ( )( ) ( ) ( )( )2
1 20 0 0 0

d d d 1 d d .
T

T s T sp
E

F u A u F w F w u uw x t
ξ ξ

ττ ξ τ ξ τ ξ∗ ⋅∇ = − − = + +∫∫ ∫ ∫ ∫ ∫          (28) 

Now we developed ( ) d
C

uF n s∗ ⋅∫ . Observe the Figure 5 and: 



M. B. Pintarelli 
 

 
85 

 
Figure 4. Domain ET.                     

 

 
Figure 5. Domain ET.                          

 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
01 0 0

d , , , 0 ,0 d , , , 0 d
s s

c
uF n s u x t w u x t wτ τ τ τ τ τ∗ ⋅ = =∫ ∫ ∫                (29) 

( ) ( ) ( ) ( )
3 0

d , , , , d 0
s T

Tc
uF n s u x t T w T xτ τ∗

→∞⋅ = →∫ ∫                           (30) 

( ) ( ) ( )
4 0

d , , 0, 0, d
T

c
uF n s u x t wτξ ξ ξ∗ ⋅ = −∫ ∫                                   (31) 

( ) ( )( ) ( )
2 0

d , , , d .
T

c
uF n s u x t s sξξ ξ ξ ξ∗ ⋅ = −∫ ∫                                  (32) 

Then 

( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2
0 0

0 1 1

0 0 0

1 d d

cos ,0 d cos e d e 0, d .

s

s t t

uw x t

x w xs s w

ξ

ξ ξ
ξ τ

τ ξ

τ τ τ ξ ξ ξ ξ ξ

∞

∞ ∞− + − +

+ +

= − −

∫ ∫

∫ ∫ ∫
           (33) 

To solve the inverse problem, where ( )s ξ  is known and ( )0,wτ ξ  is unknown we do 2 1 0.x t+ + =  
In this manner:  

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1

0

0 1

0 0

e 0, d

cos 1 ,0 d cos 1 e d .

t

s t

w

t w t s s t

ξ
τ

ξ
ξ

ξ ξ

τ τ τ ξ ξ ξ ϕ

∞ − +

∞ − += − − − − − =

∫

∫ ∫
             (34) 

We assign values to t: 0,1, 2,t =   

( ) ( ) ( )1

0
e 0, d .t

tw tξ
τ ξ ξ ϕ µ

∞ − + = =∫                              (35) 

We can interpret (35) as a one-dimensional generalized moments problem. 
We solve the problem numerically considering the finite generalized moments problem 
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( ) ( ) ( )1

0
e 0, d 0,1, ,i

iw i i nξ
τ ξ ξ ϕ µ

∞ − + = = =∫                          (36) 

and we apply the truncated expansion method. 

5.2. Numerical Approximation to the Solution of the Inverse Stefan Problem 
To obtain a numerical approximation of the solution the procedure is analogous to that presented in Section    
3. To approximate ( )0,wτ ξ  is taken a base ( ) , 0,1, 2, ,i i nφ ξ =   of ( )2 0,L ∞  obtained from the sequence 

( ) ( )1e i
ig ξξ − +=  by Gram-Schmidt method and necessary functions are added in order to have an orthonormal 

basis. We then approximate the solution ( )0,wτ ξ  with: 

( ) ( )
0

n

n i i
i

p ξ λφ ξ
=

= ∑  

where 

0
0,1, ,

i

i ij j
j

C i nλ µ
=

= =∑   

and the coefficients ijC  verifies 

( ) ( ) ( )
( )

( )
1 1

2

|
1 1 ;1

i
i r

ij rj i
r j r

g
C C i n j i

ξ φ ξ
φ ξ

φ ξ

− −

=

 
 = − ⋅ < ≤ ≤ <
 
 
∑                    (37) 

( ) 1
0,1, , .ii iC i nφ ξ

−
= = 

                             (38) 

The following theorem is the one-dimensional version of Theorem 1. In [15] is the demonstration when the 
domain is bounded. 

We present here the demonstration when the domain is the interval ( )0, .∞  
Theorem 2. Let { } 0

n
i i

µ
=

 be a set of real numbers and let ε  and M be two positive numbers such that 

( ) ( )
2

2
0

0
d

n

i i
i

g xξ ξ ξ µ ε
∞

=

− ≤∑ ∫                                (39) 

( )2 2
0

e dx Mξ
ξξ ξ ξ

∞
  ≤ ∫                                     (40) 

then if ( )lim 0,r x r Nξ ξ ξ→∞ = ∀ ∈  

( ) ( )
2

2 T 2
0

d min ; 0,1, ,
1n

Mx C C i n
i

ξ ξ ε
∞   ≤ + = +  
∫                   (41) 

and 

( ) ( ) ( )
2

2 T 2
0

d
1n

Mx p C C
n

ξ ξ ξ ε
∞

− ≤ +
+∫                           (42) 

where C is the triangular matriz with elements ijC  ( )1 ;1i n j i< ≤ ≤ < . 
Proof. Since the problem is linear we can assume 0, 0,1, ,i i nµ = =  . 
We applied Gram-Scmidt method on ( ){ } 0

n
i i

g ξ
=

 in ( )2 0,L ∞  and we get ( ){ } 0i i
φ ξ

∞

=
 then add the resulting 

set of necessary functions to obtain an orthonormal basis. 
We write ( )x ξ  as 

( ) ( ) ( )n nx h fξ ξ ξ= +  

where ( )nh ξ  it is the orthogonal projection of ( )x ξ  on the linear space generated by the set ( ){ } 0

n
i i

g ξ
=

 and 
( ) ( ) ( )n nf x hξ ξ ξ= −  it is the orthogonal projection of ( )x ξ  on the orthogonal complement. Here the 

underlying structure is the space ( )2 0,L ∞ . We can write 
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( ) ( ) ( ) ( )
0 1

n

n i i n i i
i i n

h fξ λφ ξ ξ λφ ξ
∞

= = +

= =∑ ∑                     (43) 

where ( ) ( )
0

d , 0,1,i i x iλ φ ξ ξ ξ
∞

= =∫   are the Fourier coefficients in the expansion of ( )x ξ . 

To estimate ( )nh ξ  we consider the relationship between the Fourier coefficients iλ  and the moments  

( ) ( )
0

di ig x tµ ξ ξ
∞

= ∫ : 

0
0,1, ,

i

i ij j
j

C i nλ µ
=

= =∑                                (44) 

where ijC  they are given in (37) y (38). 
In matrix notation 

0 0

1 1 .

n n

λ µ
λ µ

λ µ

λ µ

   
   
   = =
   
   
   

 

                              (45) 

Then 

( ) ( )
0

0,1, , .
i

ij j i
j

C g i nξ φ ξ
=

= =∑                          (46) 

By (43) until ( 46) we can write 

( ) 2 2T T T 2
0

d .nh C C C C C Cξ ξ λ λ µ µ µ ε
∞

= = ≤ ≤∫                  (47) 

To estimate nf  we see that each element of the orthonormal set ( )i tφ  can be expanded in terms of the  

elements other orthonormal basis, in particular the base ( ) ( ){ }
0

ei i i
l L ξξ ξ

∞−

=
= , where ( )iL ξ  it represents the 

Laguerre polynomial of degree i. 
These polynomials satisfy 

( ) ( ) ( ) ( )
2

2
d d1 0

dd i i iL L iLξ ξ ξ ξ ξ
ξξ

+ − + =                       (48) 

or also 

( ) ( ) ( )d d d .
d d di i iL L iLξ ξ ξ ξ ξ
ξ ξ ξ
 

− + =       
 

                  (49) 

Then 

( ) ( )
0

0,1, 2, ,i ij j
j

l i nφ ξ γ ξ
∞

=

= =∑                           (50) 

then using (50) 

( ) ( ) ( )
1 1 0

.n i i i ij j
i n i n j

f lξ λφ ξ λ γ ξ
∞ ∞ ∞

= + = + =

= =∑ ∑ ∑                         (51) 

After several calculations 

( ) ( )
2

2 2

0
1 0

dn n j ji
i n j

f fξ ξ ξ λ γ
∞ ∞∞

= + =

= = ∑ ∑∫                       (52) 

and 
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( ) ( ) ( )2 2

0
0

1d 1
1n

i
f i i

n
ξ ξ χ

∞∞

=

≤ +
+ ∑∫                           (53) 

where 

( )
0

.j ji
j

iχ λ γ
∞

=

= ∑                                     (54) 

Now multiplying by ( )x ξ  and integrating both sides of the differential Equation (49) and assuming that 
( )lim 0,r x r Nξ ξ ξ→∞ = ∀ ∈  we get: 

( ) ( ) ( )2 2
0

0
e d 1

i
x i iξ
ξξ ξ ξ χ

∞∞

=

= +∑∫                              (55) 

then by (53) and (55): 

( ) ( )
2

2 2
0 0

1d e d
1 1n

Mf x
n n

ξ
ξξ ξ ξ ξ ξ

∞ ∞
≤ ≤

+ +∫ ∫                     (56) 

from (47) and (56): 

( ) ( )
2

2 T 2
0

d .
1

Mx C C
n

ξ ξ ε
∞

≤ +
+∫                             (57) 

This inequality remains valid if we replace any integer i between 0 and n for n. Then the result (41) it demon- 
strated. An analogous demonstration proves inequality (42).                                         □ 

6. Numerical Example 
Find ( )0,wτ ξ  such that 

( ) ( ){ } ( )
2

2 in , ; 0 ; 0 with 1w w s sτ ξ τ ξ ξ ξ ξ
ξ τ
∂ ∂

= < < > = +
∂ ∂

 

( )( ), 0 0w s ξ ξ ξ= >  

( )( )d , 0
d

s w s ξ ξ ξ
ξ τ

∂
= − >

∂
 

( ) ( ) ( )0.25
0,0 0.5e π 0.25 0.

2
xw w erf erfτ τ τ  = = − ≥    

 

The exact solution is ( )
0.25e 10, .
2 1

wτ ξ
ξ

= −
+

 

In Figure 6 the approximate numerical solution and the exact one are compared. 
Were taken 6r =  moments. 
To apply Gram Schmidt to ( ){ } 0

n
i i

g ξ
=

 en ( )2 0,L ∞  we considerer the inner product  

( ) ( ) ( ) ( )
0

, e d .i j i jf f f f ξξ ξ ξ ξ ξ
∞ −= ∫  

The accuracy is, with this inner product ( ) ( ) 2
6 0, = 0.00306424.p wτξ ξ−  

7. Conclusions 
The parabolic partial differential equations 

( ) ( ),w w rξ τ τ
τ ξ− =  

on a region ( ) ( )1 2 20, ,E b a b= ×  can be written as an Fredholm integral equation 
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Figure 6. ( )
0.25e 10,
2 1

wτ ξ
ξ

= −
+

 and ( )6 ,p τ ξ .            

 

( ) ( ) ( ) ( ) ( )2 1

2 20

1

, ,
, , , , d d , .

π

b b

a

G x t R x t
w u x t x t x N

x t
b

τ ξ τ ξ τ ξ ϕ
−

= = ∈
   +    

∫ ∫  

This equation is of the form: 

( ) ( ) ( )1 2

20
, , , , d d ,

b b

a
w K x t x tτ ξ τ ξ τ ξ ϕ=∫ ∫  

with ( )
1

π, , , e cos , .t xK x t x N
b

ξτ ξ τ−  
= ∈ 

 
 

If ( ) ( )2,w L Eτ ξ ∈ , then this Fredholm integral equation of first kind can be transformed into a bi-dimen- 
sional generalized moment problem assigning integer values greater than or equal to zero to variables x and t 

( ) ( )1 2

20
, , d d 0,1,2, , 0,1, 2, .

b b
ij ija

w K i jτ ξ τ ξ τ ξ µ= = =∫ ∫               (58) 

As the functions ( ){ },ij ij
K τ ξ  are linearly independent then the generalized moment problem defined by (58) 

can be solved numerically considering the correspondent finite problem. 
The inverse Stefan problem which it is to find ( )0,wτ ξ  being ( ),w τ ξ  unknown and such that the follow- 

ing conditions are met 

( ) ( ){ }
2

2 in , ; 0 ; 0w w sτ ξ τ ξ ξ
ξ τ
∂ ∂

= < < >
∂ ∂

 

( ) ( )0, 0w fξ ξ ξ
τ
∂

− = >
∂

 

( )( ), 0 0w s ξ ξ ξ= >  

( )( )d , 0
d

s w s ξ ξ ξ
ξ τ

∂
= − >

∂
 

( ) ( )0, 0 0w wτ τ τ= ≥  

( )0s a=  

is equivalent to solve the integral equation 
( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1

0

0 1

0 0

e 0, d

cos 1 ,0 d cos 1 e d

t

s t

w

t w t s s t

ξ
τ

ξ
ξ

ξ ξ

τ τ τ ξ ξ ξ ϕ

∞ − +

∞ − += − − − − − =

∫

∫ ∫
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which is equivalent to the generalized moments problem  
( ) ( ) ( )1

0
e 0, d 0,1, 2,i

iw i iξ
τ ξ ξ ϕ µ

∞ − + = = =∫   

and can be solved numerically considering the correspondent finite problem. 
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