
World Journal of Condensed Matter Physics, 2015, 5, 353-360 
Published Online November 2015 in SciRes. http://www.scirp.org/journal/wjcmp 
http://dx.doi.org/10.4236/wjcmp.2015.54036   

How to cite this paper: Shojaei, A., Moarrefi-Romeileh, M. and Joata-Bayrami, A. (2015) Frequency Dependence of Optical 
Conductivity in MgB2 Superconductor. World Journal of Condensed Matter Physics, 5, 353-360.  
http://dx.doi.org/10.4236/wjcmp.2015.54036   

 
 

Frequency Dependence of Optical  
Conductivity in MgB2 Superconductor 
Adel Shojaei1, Mohammad Moarrefi-Romeileh2*, Asadollah Joata-Bayrami3 
1Department of Physics, Behbehan Branch, Islamic Azad University, Behbehan, Iran   
2Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran 
3Department of Science, Omeidieh Branch, Islamic Azad University, Omeidieh, Iran 

   
 
Received 23 August 2014; accepted 27 November 2015; published 30 November 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Using Green’s function method, the frequency dependence of optical conductivities of high-quality 
MgB2 film is calculated in the framework of the single- and two-band model. By comparing the 
numerical and experimental results, it is shown that the single-gap isotropic model is insufficient 
to understand consistently optical behaviors. Also, it is concluded that the two-band model con-
sistently describes the optical behaviors. In the two-gap model, we consider that the both compo-
nents of optical conductivity are a weighted sum of the contribution from σ and π bonds and hy-
bridization between them is negligible. 
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1. Introduction 
The discovery of MgB2 superconductor [1] at relatively high temperature 39 KCT =  has appealed much atten-
tion in theoretical and applied condensed matter physics. This material has been known as the first supercon-
ductor which has two energy gaps at the Fermi surface: 1) in the two dimensional band (σ) and 2) three dimen-
sional band (π) [2] [3]. The inter-band scattering between them is negligible. To explore the mechanism of su-
perconductivity in this material, it is crucial to determine the symmetry of the superconducting order parameter 
which governs the behavior of quasiparticle excitations below CT . 

There have been several studies to detect the MgB2 gaps. The isotope effect of boron has suggested that MgB2 
is a BCS-type superconductor [4] and the high CT  is realized through strong electron-phonon coupling with 
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light boron mass. Several studies have shown two different superconducting gaps [5] [6]: a gap much smaller 
than the expected BCS value and another is comparable to the BCS value given by 2 3.53 B Ck T∆ = . Their ratio 
is estimated to be min max 0.3 - 0.4∆ ∆ ≈  using several experiments. The two-gap model is shown to consistent-
ly describe the optical conductivity and thermodynamic properties of MgB2 [7]-[9]. However, there is no general 
agreement whether MgB2 is an s-wave BCS type superconductor or not. In conventional s-wave superconduc-
tors, there is no quasiparticle excitation at low energies and the thermodynamic and transport coefficients decay 
exponentially at low temperatures. In this superconductors, the deviation of penetration depth ( )Tλ∆  from its 
zero temperature value ( )0λ  exhibits activated behavior [10] i.e. ( ) e TTλ −∆∆ ∝  (we set 1Bk = =  through 
the paper), reflecting the isotropic BCS energy gap at the Fermi surface. In contrast, in unconventional super-
conductors with gap nodes, such as in high- CT  oxides, power law behaviors are expected in thermodynamic 
and transport coefficients at low temperatures [11]. 

Pronin et al. measurements [12] show that the low temperature dependence of penetration depth of MgB2 film 
has a 2T  behavior. This disagreement with BCS calculations could be caused by an additional absorption. Also, 
theoretical calculations of A. A. Golubov et al. [13] and A. Brinkman et al. [14] show that the penetration depth 
is well described by two band model. 

Kaindl et al. [15] measured both components of complex conductivity of MgB2 film as a function of fre-
quency for different temperatures. They compared their results with conventional superconductors and con-
cluded that their results were inconsistent with BCS calculations. This disagreement with BCS calculations 
could be caused by an additional absorption. 

In this paper we introduce the new view of the frequency dependence of optical properties of MgB2. Numeri-
cal calculations of frequency dependence of optical conductivities are carried out by proposing different kinds of 
energy gaps. We show that the optical conductivities are well described by a two-band superconductor model 
with different anisotropies in k-space. First, we conclude that the single-gap model is insufficient to understand 
consistently the optical behaviors. Then, it will be shown that the two-gap model with different symmetries in 
k-space is sufficient to understand optical properties. In this model the larger gap σ∆  approximately follows 
of ordinary usual BCS-like curve and the smaller gap π∆  deviates from the usual BCS-like behavior and is 
similar to a d-wave energy gap. Both gaps are expected to close at the same transition temperature. 

2. Formulation of the Problem 

Our model of MgB2 by a Hamiltonian has two bands, labeled σ  and π , which hybridize through an inter-site 
hopping term, then the Hamiltonian reads 

c d cdH H H H= + +                                      (1) 

where 

( ) , , , ,
1
2c p p p cc p q p q p p

p pp q
H c c V q c c c cσ σ σ σ σ σ

σ σσ
ε + + +

′ ′+ −
′ ′

= +∑ ∑                       (2) 

( ) , , , ,
1
2d p p p dd p q p q p p

p pp q
H d d V q d d d dσ σ σ σ σ σ

σ σσ
ε + + +

′ ′+ −
′ ′

= +∑ ∑                      (3) 

( )( ), , , , , , , ,
1 .
2cd cd p q p q p p p q p q p p

pp q
H V q c c d d d d c cσ σ σ σ σ σ σ σ

σσ

+ + + +
′ ′ ′ ′+ − + −

′ ′
= +∑                  (4) 

Here, c and d are referred to σ  and π  bands with creation and annihilation operators c+ , c, d + , d, re-
spectively, and pε  is the quasi-particle energy with respect to Fermi energy. The pairing potentials ccV  and 

ddV  act intra-band and cdV  is the inter-band interaction dominated by multi-phonon processes. We define the 
green function for the σ -band as [16] 

( ) ( ) ( ), ,,c p pG p T c cτ σ στ τ τ τ+′ ′− = −                              (5) 

( ) ( ) ( ), ,,c p pF p T c cττ τ τ τ+
− ↓ ↑

′ ′− =                               (6) 

( ) ( ) ( ), ,, .c p pF p T c cττ τ τ τ+ +
↑ − ↓

′ ′− =                              (7) 
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We can write the similar equations for π  band. By using the Gorkov equations in superconducting state:
 

( ) ( ) ( ) ( ), ,p c c cG p p F pε τ τ τ τ δ τ τ
τ

+∂  ′ ′ ′− − − + ∆ − = − ∂ 
                    (8) 

( ) ( ) ( ), , 0p c c cG p p G pε τ τ τ τ
τ
∂  ′ ′− + − + ∆ − = ∂ 

                       (9) 

where ( )c p∆  is the gap energy in σ  band and is determined by 

( ) ( ) ( ) ( ) ( ),0 ,0 .c cc c cd d
q q

p V q F p q V q F p q∆ = − − − −∑ ∑                    (10) 

We assume that the hybridization between σ  and π  bands is negligible, and then the last term in Equa-
tions (1) and (10) can be ignored. In this case two parts of the Hamiltonian ( cH  and dH ) are independent. 
Therefore, the σ  and π  bands has the similar relations and we omit the indexes c and d. 

Optical conductivity describes the linear response of a material, which is exposed to an electromagnetic field. 
This field induces shielding currents 

( ) ( ) ( ), , ,i ij j
j

J q K q A qω ω ω= −∑                            (11) 

where , , ,i j x y z= , ω  is the phonon energy, ( ),jA q ω  is the Fourier transform of the covariant vector po-
tential and ( ),ijK q ω  is the response kernel which depends only on the properties of the material. It can be ex-
pressed in terms of quasiparticle propagators ( ),G q ω  and once this is known, the optical conductivity follows 

( ) ( ), , .iq K q iσ ω ω
ω

=                                (12) 

The real and imaginary parts of the optical conductivity are given by 

( ) ( )1
1Re Im ,s K q iσ σ ω ω δ
ω

= = − +                           (13) 

( ) ( )2
1Im Re ,s K q iσ σ ω ω δ
ω

= = − +                           (14) 

where δ  is a positive infinitesimal. The response kernel is given by the current-current correlation function as 
[16] 

( ) ( ) ( )
0

1, d , ,0
3

K q i J q J q
V

β
ω τ τ= − ⋅ −∫                        (15) 

where V is the volume of the system and the current expression in the case of noninteracting particle is given by 

( ) , , .
2 p q p

q

e qJ q P c c
m σ σ

+
+

 = + 
 

∑




                           (16) 

By using Equation (16), Equation (15) can be written as 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )
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2 1 1, 1
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1 11 1 1
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1 1 1
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ω

ω

ε ε
ω

ε

+ − + −
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+ − + − + −
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+ − +

 ∆ ∆= − + + 
+ −   

   ∆ ∆
+ − − − + −      − −    

 ∆ ∆
+ − − × − +



∑

11 p

p p pE i E E
ε

ω
−

+ + −

  − ×      + +    

    (17) 

where 2p p q+ = +  and 2p p q− = − . 
Here, we consider thin film satisfying Fd ξ υ≈ ∆  for the film thickness d and the coherence length ξ . 

In these cases we can regard p +  and p −  as independent variables. Since Fqυ ω∆ ≈  we can do Abri-
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kosov’s replacement [17]   

( ) 10 d d .
4 p p

q F

N
q

ε ε
υ + −→∑ ∫                                   (18) 

Then in the isotropic case we obtain the Mattis-Bardeen formula from Equations (13) and (14): 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2
1

2

1 d 1 2 1 2

12 d 1

s

n

EN E N E f E
E E

EN E N E f E f E
E E

ωσ
ω ω ω ω

σ ω ω

ω ω
ω ω

−∆

∆

∞

∆

 ∆
= − − + − Θ − ∆  − 

 ∆
+ + − + +  + 

∫

∫
            (19) 

( ) ( ) ( )( ) ( )
( )

2
2

max , 22 2 2

1 d 1 2s

n

E E
E f E

E E
ω

ωσ
ω ω

σ ω ω

∆

−∆ ∆−

+ + ∆
= − +

∆ − + − ∆
∫                (20) 

where nσ  is the real part of the conductivity for normal state and ( ) 2 2N E E E= − ∆  is the density of  

states that generalized to ( ) 2 2Re k
k

N E E E= − ∆ , where the bracket indicates the average over the Fermi  

surface. 

3. Numerical Results 
Now, we present the numerical solutions of complex conductivity of MgB2 film in the frequency range 

10 16 cmk −< <  for different temperatures. We use the temperature dependence of energy gaps as [18] 

( ) ( ) ( ){ },
1 2

, , 0 1 .p
CT T T T σ π

σ π σ π∆ = ∆ × −                             (21) 

The anisotropy of d-wave gap considered in this paper is 

( ) ( )( ), 1 cos 2 .T k T aπ π θ∆ = ∆ +                                (22) 

Here, θ is the angular deviation of k


 from the given node direction in the basal plan. The parameter a deter-
mines the anisotropy. We have chosen ( )0 3.71 meVTσ∆ = , ( )0 1.18 meVTπ∆ = , 2.98pσ =  and 1.78pπ =  
so that the theoretical curves for two-band model at lowest frequency ( )2 meVω =  match the experimental 
values of 2σ  (solid squares curve of Figure 3 in Ref. [15]). For ( ),T kπ∆ , the average over the Fermi surface 
in Equation (19) for 0 1a< <  is given by: 

( )
( ) ( )

2 2

1Re , , 1 1
2 2,

F k a a
aT kπ

ω ω π ω
ωω

 = − ∆ < < + ∆ 
 − ∆

                 (23) 

( ) ( )1 , , 1
2

F k a
a
ω γ ω
ω

= + ∆ <                               (24) 

where ( )( )2 1 2k aω ω= − − ∆ , ( )( ) ( )( )1sin 4 1 1a a aγ ω ω ω−  = ∆ − − ∆ + + ∆   and ( ),F kγ  is the elliptic  

integral of the first kind. 
In Figure 1 and Figure 2 we show our numerical results for the real and imaginary parts of optical conductiv-

ity as a function of frequency for 6 KT =  and 0.5a = . The solid and dotted curves represent the real and 
imaginary parts of optical conductivity for s-wave and d-wave gaps separately. These curves do not fit the expe-
rimental results of Kaindl et al. [15], which is shown in the Figure 3 of their paper. The d-wave curve of real 
part of conductivity is bigger than s-wave curve at same temperature. Thus the main contribution to the optical 
absorption comes from π  band. However, within the single-gap model, it is difficult to understand the optical 
behaviors measured by experimental method of Kaindl et al. [15]. 

Here, a two-band model with different anisotropies is investigated. We assume that the hybridization between 
σ  and π  bands is negligible so that the optical conductivities are given by 
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Figure 1. Frequency dependence of the real part of optical conductivity 

( )1σ ω  normalized to its normal state value ( )1 40 KNσ  for 6 KT = . 
The solid and dotted curves represent the real part of optical conductivity 
for s-wave and d-wave gaps separately. The open circle curve indicates 

( )1σ ω  using the two-band model.                                             

 

 
Figure 2. Frequency dependence of the imaginary part of optical conduc-
tivity ( )2σ ω  normalized to its normal state value ( )1 40 KNσ  for 

6 KT = . The solid and dotted curves represent the imaginary part of opti-
cal conductivity for s-wave and d-wave gaps separately. The open circle 
curve indicates ( )2σ ω  using the two-band model.                             

 
1 1 1 1 1w wσ σ π πσ σ σ= +                                    (25) 

2 2 2 2 2w wσ σ π πσ σ σ= +                                   (26) 

1w σ , 1w π , 2w σ  and 2w π  are the weighting factors with 1 1 1w wσ π+ =  and 2 2 1w wσ π+ = , which deter-
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mines the contributions from σ  and π  bands. The open circle curves in Figure 1 and Figure 2 indicate opt-
ical conductivities using the present two-band anisotropic model. For 1ω > , these curves are in good agree-
ment with experimental result of Kaindl et al. 

In this curves, the best fit to the experimental data are obtained if we assign the ratio of the weights of the σ  
band to that of the π -band as 1 1 0.35 0.65w wσ π =  and 2 2 0.4 0.6w wσ π = , which approximately agrees with 
band structure [19] and complex conductivity [20] calculations, respectively. These weights show that the main 
contribution to the optical conductivities comes from the three dimensional band. The open circle, solid and 
dotted curves in Figure 3 and Figure 4 are calculated for 6 KT = , 17.5 KT =  and 24 KT =  respectively. 
These curves are in good agreement with Kaindl et al. [15] measurements. 
 

 
Figure 3. Frequency dependence of Real part of conductivity for differ-
ent temperatures. The open circle, solid and dotted curves are calculated 
for 6 KT = , 17.5 KT =  and 24 KT =  respectively.                            

 

 
Figure 4. Frequency dependence of imaginary part of conductivity for 
different temperatures. The open circle, solid and dotted curves are cal-
culated for 6 KT = , 17.5 KT =  and 24 KT =  respectively.                       
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4. Conclusion 
By using Green’s function method and linear response theory we have calculated the frequency dependence of 
the real and imaginary parts of optical conductivity of MgB2 film in the framework of two-band theory. We have 
shown that a single-gap model is insufficient to describe the optical behaviors, but the two-band model with dif-
ferent symmetries can explain the experimental results consistently. Also, we have shown that the electrons in 
π  band have greater contribution in the optical and transport behaviors than do electrons in the σ  band. We 
have considered that the optical conductivities are a weighted sum of the continuation from each band and the 
interaction between them is negligible. 
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