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Abstract

In this paper, we present homotopy analysis method (HAM) for solving system of linear equations
and use of different H(x) in this method. The numerical results indicate that this method performs
better than the homotopy perturbation method (HPM) for solving linear systems.
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1. Introduction

Approximating the solutions of the system of linear and nonlinear equations has widespread applications in ap-
plied mathematics [1]-[11]. Many techniques including homotopy perturbation method (HPM) [12] and iterative
methods [ 13] were suggested to search for the solution of linear systems. In 2009 Keramati [2] and in 2011 Liu
[3] in their articles applied HPM to the solution of the system Ax =5 . In this article we used homotopy analysis
method [14] [15] with different H(x) to solve linear system Ax =5 and showed that our results were better
than the HPM results; then convergence of the method was considered.

Consider a linear system

Ax =b, (1)

where 4= [aij] € R™ isnonsingular and x,beR" isa vector.
First of all, the basic ideas of the homotopy analysis method are being discussed.
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Let x, be an initial guess of x, and ¢ e [0,1] be called the embedding parameter. The homotopy analysis
method is based on a kind of continuous mapping x—>¢(x;q) such that, as the embedding parameter g
increases from 0 to 1, ¢(x;q) varies from the initial guess x, to the exact solution x. To ensure this, choose
such an auxiliary linear operator as

L(¢(x.q))=¢(x.9) @
and we define the operator
N(p(x.)) = A(9(x.0) b ®

Let 7#0 and H (t) # 0 denote the so-called auxiliary parameter and auxiliary matrix, respectively. Using
the embedding parameter ¢ e [O,l] , we construct a family of equations

(1-q)L(¢(x.9)~x,) = hqH (x) N (4 (x.9))
from (2) and (3) we have
(1-q)(¢(x.9) ~x,) = hqtl (x)(A(¢(x.4)) = b). @)

Obviously, at ¢ = 0 and ¢ = 1, one has ¢(x,0)=x, and A(¢(x,l)) =b respectively. Thus, as g increases
from 0 to 1, ¢(x;q) varies continuously from x, to x. Such kind of continuous variation is called deforma-
tion in topology [16]. We call the family of equations like (4) the zeroth-order deformation equation. Now we
define mth-order deformation derivative

1 0"¢(x,q)
m __' o™ ? (5)
m! q o0
where m=1,2,3,---. Because ¢(x,q) is now a function of the embedding parameter ¢, by Taylors Theorem,
we expand ¢(x;q) ina power series of the embedding parameter ¢ as follows:
& 1 0"¢(x.q ”
o(xa)=9(x0)+ S LTOCD e
m=1 M ' aq 4=0
By using (5) we have
B(x.q) =%+ 25, q" (6)
m=1
If the series (6) is convergent at ¢ = 1, then using the relationship ¢(x,1) =x one has the series solution
X=X+ DX, (7
m=1
Now we have the so-called mth-order deformation equation
L[xm - lmxm—l] = hH(x)Rm (im—l )’ (8)
where
s 1 0"'N(4(xq
Rm (xmfl ) = | (mf(l ))| (9)
(m - 1). o] |q:0
and
0 when m<1
_ ’ 10
n {1 otherwise. (10)
By using (2) we obtain
X, = XX =hH (X)R, (X, ),

‘xm = %mxmfl +hH(x)Rm (‘;C’mfl )
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Also by using (3) and (9) we have
1o (A¢(x,q)—b)|

R, ()Ncmfl):(m—l)! og™! | .
-
1 A ()| 1 ()
(m=1)! g™ |q:0 (m—=1)! ag"" |q:0’

and then
R, (%, )=A4x, , —b(1-7,).
Finally by using (11) we obtain
X, = YKo +hH()c)(Axm_1 -b(1-g, ))
Now with the initial guess x, =0 and /4 =-1 we have
x, = H(x)b,
X, =x —H(x)Ax, =(I-H(x)A)x, =(I-H(x)A)H (x)b,
x, = x, — H (x)Ax, = (1 H(x) A)x, = (1 - H(x) 4) H(x)b,

-1

x,=x,,—H(x)A4x, = (I—H(x)A)x = (I—H(x)A)n H (x)b,

n n-1
hence, by substituting (13) in (7) we obtain
X=X +X +X + 4 X+
= H(x)b+(1—H(x)A)H (x)b+(I1~H(x)A) H(x)b+
+(1-H(x)4)" H(x)b+-,

and by factor of H(x)b we have

x:[1+([—H(x)A)+(I—H(x)A)2 ot (I-H(x)4)" +---}H(x)b.

Now we have to prove the convergence of (15).

Theorem 1. The sequence x") = {Zm:[I—H(x) A]k}H(x)b, is a Cauchy sequence if
k=0

|r—H(x) 4] <1.
Proof: Following ([2], Theorem 1) we have to show that

lim [[x" 7] — x| = 0.

m—>o0

Now considering
o [t
k=1
then

x[erp] _x[m] m+k

< ||H(x)b||kZ:||I—H(x)A

let y= ||I —H (x) A” then

&)

(12)

(13)

(14)

(15)
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m+ m m z m ? _1
xlmep) S"H(x)b "yt S”H(x)b"j/ (—77 1 ],
k=1 -
so we have
. m+ m 71) -1 : m
lim Lm+p] (] s( = J”H(x)b"(ilg}oy ),
since y <1 then we obtain
lim [|x"#) — xI"1fl = o

which completes the proof.

2. Main Results

In this section For solving the linear system (1) we apply different H(x) and the convergence of the method is
checked. At first assume that A is a nonsingular diagonally dominate matrix and a, #0,i=1,2,---,n. Dividing
(1) by a, and without loss of generality we can obtain

Bx=d. (16)
where B = [bi’j] , such that
1 fori=j,i=12,--,n
b . =4a;; 17
=L fori# j,i,j=1,2,",n, (17

and

i

d=L i1
ai,i

Now we apply different H(x) and the convergence of the method is tested.
1) we propose H(x)=1+S with

s ( ) —-b,,, fori=12,---,n-1,j=i+1 (18)
=|S.. =
v 0 otherwise,
and show that
|1 - (x)B|<1.
Theorem 2. If A is diagonally dominated and B = I:bi,_j] , where b, ; is defined in (17) then
|r-H(x)B| <1
Proof: By direct calculation we have
b12b21 0 _b13 + b12b23 o _bln + b12b2n 1
_b21 + b23b31 b23b32 0 _bln + b12b2n
I—H(x)B = : : . . :
_bn—l,l + bn—l,nbn,l _bn—1,2 + bn—l,nbn,z bn—l,nbn,n—l 0
L _bn,l _bn,Z o _bn,n—l 0 i

and first row is satisfied:
|Byboy | + | =By + Biybos | +| =By + biyboy |+ + | =By, + By,
<[y [Bas |+ B[+ B B |+ (b1 [+ [Bra ||| -+ [, [ + [Byo |
= |Bya | (|B21| + [P + [P |+ + B

)+ (1B ]+ [+ + (B )-
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Since 4 is diagonally dominated, B is diagonally dominated and we have
By |+ [Bos |+ |Ba | + -+ +]Br, | < 1. (19)
Now by using (19) we obtain

|b,2|(|b21|+|b23|+|b24|+---+

<1

bz n

}+<|bu|+|b14|+---+|bm|>

< By |+|bys |+ By |+ + B, <1
This relation satisfis for other rows also and
|- (x)B| <1.
2) We propose H (x)=1+R with

A
and show that
|1 - (x)B|<1.
Theorem 3. If A is diagonally dominated and B = [bi’j] , where b, ; is defined in (17) then
|r-H(x)B| <1
Proof: Following Theorem (2)
[0 b, b, b, |
by, 0 —b,, b,,
I-H(X)B= S :
_bn—l,l _bn—1,2 0 bn—l,n
R, R, R,., R, |
such that
R, =b,,b, +b, by +---+b, b, ,,
R,=b,b,+b,by, +--+b,, b, ,,
R, =b.b, ,+tb b, ++b,, b, |,
R, =b,b,+b,,b,, ++b, b,
and last row is satisfied:
byobyy +b,shyy +o by by |4 [B By + b, by 4 by by |

+b,.,b, b

n—-2,n—1

[|b21|+|b23|+---+|b2!"|J

<1

+ b

-1 n—1,n

+bn’2bz’n_1 +--+b

n,n-2

< |b,,’1|(|b12|+|b13|+~~+ b, J+
<1

bn,lbl’n +bn’2b2,n +---+b

n,n—1

bn,Z

+ b

n,n—1

bn,3

b . |+|b

N,
<1

n71,1| n71,2| o

[|b31|+|b32|+-~~+|b3’n|]+---+

<1

<

b

n,

+ +eolb, | <1

bn,2

This relation satisfis for other rows also

)
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||1 H(x B|| <1.

3) We propose H (x) =71+S+R such that S and R was explained in (18) and (20) respectively and show
that

|- (x)B|<1.
Theorem 4. If A is diagonally dominated and B = [b. } , where b, ; is defined in (17) then

||1 H(x B|| <1

Proof: Similar to proof of Theorems (2) and (3).
4) We propose H (x)=1+S(m) with
—b, for 1<i<n,j>i

S(m)=(S,~,-)={ . @1)

0 otherwise,

kiz{mm] mjax|a,.j|}, 1<i<n

and show that
|- (x)B|<1.
Theorem 5. If A is diagonally dominated and B = [b. ] , where b, ; is defined in (17) then

|r-H(x)B| <1
Proof: Following Theorem (2) after expanding /—H (x)B according to the first row we have
| 1k 1|+|_b12 +b1k bk 2|+|_b13 +b1k bk 3|+"'+|_b1k -1 +b1k]b/qkl |

+ 0+|_b1k +1 +b1k1bk o+l

+---+| —b,, +b, b

1n kyn

< |b1kl ||bkl 1 | +|_b12| |b1kl ||bk12 | + |_b13| |b1kl
+|b1k1 ||bk1k1—l | + |_blk1+1 + |blkl ||bk1k1+1

bk13|+'”+|_blkl—l|

+~--+|—bl"|+|b1kl| b

kyn

R

:|b1k|| |bk11|+|bk12|+”'+|bk1k1—l|+|bk1k1+l

<1

+ (|_b12| + |_b13| t+eet |_b1k1—1 | + |_b1k1+l

S|b1kl |+|_b12|+|_b13| +”.+|_b1k171|+|_b1/q+l

ka n

5,

+oet|-by <1

This relation satisfis for other rows also

||1 H(x B|| <1.

5) We propose H (x)=1+S(m)+R suchthat S(m) and R was explained in (21) and (20) respectively
and show that

|1 -H (x)B|<1.
Theorem 6. If 4 is diagonally dominated and B —[ ] where b, , is defined in (17) then
|[r-H(x)B| <1

Proof: Similar to proof of Theorems (3) and (5).
6) We propose H (x)=1—-U such that U is the strictly upper triangular part of 4 and show that
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|1 - (x)B|<1.
Theorem 7. If A is diagonally dominated and B = [bl.’]] , where b, ; is defined in (17) then

||1 H(x B|| <1

Proof: Following Theorem (2) after expanding /—H (x)B according to the first row we have
By, +bisby, + o+ by, by |+ [bisbyy, +buby, +-+-+ by,

12O 1n~n2
+...+|b b +b b +- +b1n lbn ll1|
13 |bl4||b42|+m+
+“'+|b12||b2n|+|b13|b

3n

]+|b13|[|b31|+|b32|+|b34|+~-+ b

3n
<1

+|blzbz3 +b14b43 +"'+b1nbn3
< |y |[Ba |+ [Bys |y |+ + [P

1n

+ by ||Bs | +[Bra] [ | + -+ +

b, |+

bln bn3

1n

b, |15

nfl,n|

G4

1n—1

4.

+---+|b2n

<1

= |b12 | [|b21 | + |b23
b, +oo by, <1

{ nl n,n—1 ]S |b12|+|b13
<1 <1

b

In

+ + +|b

This relation satisfis for other rows also

||1 H(x B|| <1.

7) We propose H (x) =]—-U+R such that U is the strictly upper triangular part of 4 and R was explained in
(20) and show that

|r—H(x)B|<1.
Theorem 8. If A is diagonally dominated and B = [b. ] where b, , is defined in (17) then
|r-H(x)B| <1

Proof: Similar to proof of Theorems (3) and (7).
Now in the next section we apply H (x) for solving numerical examples.
3. Numerical Results

In this section, we present some numerical examples to apply HAM and HPM methods for solving linear system.
We used of Matlab 2013 for numerical results.

4 1 -1 7
Example 1. Consider the linear system Ax=b, that A=|-1 6 2 |, b=|9| and the exact solution is
0 1 -3 5
1
x=|2

Table 1 shows the iteration number,error,spectral radius of iteration matrix and computation time.

According to Table 1 we obtain the desirable result for solving this system by seven iterations with HAM and
H(x)=1-U+R while by HPM method we used of fourteen iteration.

In this example the matrices Sand §(m) are same and the results are same too.

Example 2. In this example we apply HAM method for solving the linear system

Ax=b
where 4 isa 1000x1000 matrix, bisa 1000x1 vector that its components are sum of the row components of
the corresponding matrix and the exact solution is [1 1 - 1] The numerical results are in Table 2.

()
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Table 1. Camparision between HPM and HAM for 3 x 3 system.

Method Iteration Error Spectral radius Times (s)
AM (H (x)=1) (HPM) 14 107 0.4004 0.013
AM (H (x)=1+S) 11 107 0.3057 0.010
AM (H(x)=1+R) 9 10° 02168 0.010
HAM (H (x)= I+R+S) 8 10°° 0.1806 0.014
HAM (H (x)=1+S(m)) 11 10 0.2918 0.010
HAM (H (x)=1+S(m)+R) 8 107 0.1806 0.014
AM (H (x)=1- U) 8 107 0.2918 0.011
AM (H (x)=1-U+R) 7 107 0.1667 0.011
Table 2. Camparision between HPM and HAM for 1000 x 1000 system.
Method Iteration Error Spectral radius Times (s)
HAM (H (x)=1) (HPM) 36 10 0.5258 16.378
HAM (H (x)=1+5) 32 107 0.5167 19.141
HAM (H (x)=1+R) 32 10 05157 17.176
HAM (H (x)=1+R+S) 32 107 0.5169 18.010
HAM (H (x)=1+5(m)) 32 10 0.5162 20.112
HAM (H (x)=1+8(m)+R) 32 10 0.5261 19.200
HAM (H (x)=1-U) 25 10 0.4143 11.731
HAM (H (x)=1-U+R) 20 10 0.4092 9.175

4. Conclusion

From the numerical results, we have seen that the HAM method with different H (x) produces a spectral ra-
dius smaller than the HPM and with the less iteration we obtain the desirable result.
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