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Abstract

In this article, we study necessary and sufficient conditions for a function, defined on the space of
flags to be the projection curvature radius function for a convex body. This type of inverse prob-
lems has been studied by Christoffel, Minkwoski for the case of mean and Gauss curvatures. We
suggest an algorithm of reconstruction of a convex body from its projection curvature radius func-
tion by finding a representation for the support function of the body. We lead the problem to a
system of differential equations of second order on the sphere and solve it applying a consistency
method suggested by the author of the article.
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1. Introduction

The problem of reconstruction of a convex body from the mean and Gauss curvatures of the boundary of the
body goes back to Christoffel and Minkwoski [1]. Let F be a function defined on 2-dimensional unit sphere S*.
The following problems have been studied by E. B. Christoffel: what are necessary and sufficient conditions for
F to be the mean curvature radius function for a convex body. The corresponding problem for Gauss curvature is
considered by H. Minkovski [1]. W. Blaschke [2] provides a formula for reconstruction of a convex body B
from the mean curvatures of its boundary. The formula is written in terms of spherical harmonics.

A. D. Aleksandrov and A. V. Pogorelov generalize these problems for a class of symmetric functions
G(Ri, R,) of principal radii of curvatures (see [3]-[5]).
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Let B R" be a convex body with sufficiently smooth boundary and let R (@), Rn_l(a)) signify the
principal radii of curvature of the boundary of B at the point with outer normal direction @ <S"™. In n-dimen-
sional case, a Christoffel-Minkovski problem is posed and solved by Firay [6] and Berg [7] (see also [8]): what are
necessary and sufficient conditions for a function F, defined on ™ to be function } R, (@)-R, () fora
convex body, where 1< p<n-1 and the sum is extended over all increasing sequences iy,---,i, of indices
chosen fromthe set i=1,---,n—1.

R. Gardner and P. Milanfar [9] provide an algorithm for reconstruction of an origin-symmetric convex body
K from the volumes of its projections.

D. Ryabogin and A. Zvavich [10] reconstruct a convex body of revolution from the areas of its shadows by
giving a precise formula for the support function.

In this paper, we consider a similar problem posed for the projection curvature radius function of convex bo-
dies. We lead the problem to a system of differential equations of second order on the sphere and solve it apply-
ing a consistency method suggested by the author of the article. The solution of the system of differential equa-
tions is itself interesting.

Let Bc R® be a convex body with sufficiently smooth boundary and with positive Gaussian curvature at
every point of the boundary 6B . We need some notations.

S?—the unit sphere in R®, S, c S*—the great circle with pole at weS?, B(a))—projection of B onto
the plane containing the origin in R*® and orthogonal to w, R(a)l,¢) —curvature radius of 6B(a)) at the
point with outer normal direction @ €S, and call projection curvature radius of B.

Let F be a positive continuously differentiable function defined on the space of “flags”
F = {(a) p)weS pe Sw} . In this article, we consider:

Problem 1. What are necessary and sufficient conditions for F to be the projection curvature radius function
R(af,qo) for a convex body?

Problem 2. Reconstruction of that convex body by giving a precise formula for the support function.

Note that one can lead the problem of reconstruction of a convex body by projection curvatures using repre-
sentation of the support function in terms of mean curvature radius function (see [7]). The approach of the
present article is useful for practical point of view, because one can calculate curvatures of projections from the
shadows of a convex body. Let’s note that it is impossible to calculate mean radius of curvature from the limited
number of shadows of a convex body. Also let’s note that this is a different approach for such problems, because
in the present article we lead the problem to a differential equation of spatial type on the sphere and solve it us-
ing a new method (so called consistency method).

The most useful analytic description of compact convex sets is by the support function (see [11]). The support
function of B is defined as

H (x)=sup(y,x), xe R®.
yeB

Here () denotes the Euclidean scalar product in R®. The support function of B is positively homogeneous
and convex. Below, we consider the support function H of a convex body as a function on S* (because of the
positive homogeneity of H the values on S* determine H completely).

ct (Sz) denotes the space of k times continuously differentiable functions defined on S®. A convex body B
is k-smooth if its support function H e ok (SZ) .

Given a function H defined on S?, by H, (@), @S, we denote the restriction of H onto the circle S,
for weS?, and call the restriction function of H.

Below, we show (Theorem 1) that Problem 1. is equivalent to the problem of existence of a function H de-
finedon S* suchthat H,(-) satisfies the differential equation

H,(p)+ [Hw ((p)}"w =F(w,9), for pes, (1)

forevery weS*.

Definition 1. If for a given F there exists H defined on S* that satisfies Equation (1), then H is called a solu-
tion of Equation (1).

In Equation (1), H,(¢) is a function defined on the space of an ordered pair orthogonal unit vectors, say
e, e,, (in integral geometry such a pair is a flag and the concept of a flag was first systematically employed by
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R.V. Ambartzumian in [12]).
There are two equivalent representations of an ordered pair orthogonal unit vectors e, e, , dual each other:

(0,0) and (Q, @), 0]

where weS? s the spatial direction of the first vector e, and ¢ is the planar direction in S, coincides

with the direction of e,, while QeS’ is the spatial direction of the second vector e,, and @ is the planar

directionin S, coincides with the direction of e, . The second representation we will write by capital letters.
Given a flag function g (w,¢), we denote by g~ the image of g defined by

9 (QP)=g(wp), ®3)

where (a),(o)* =(9,®) (dual each other).

Let G be a function defined on F . For every o eS?, Equation (1) reduces to a differential equation on the
circle S,.

Definition 2. If G(a)) is a solution of that equation for every @ eS?, then G is called a flag solution of
Equation (1).

Definition 3. If a flag solution G(w,¢) satisfies

G (Q@)=G"(Q) (4)

(no dependence on the variable @), then G is called a consistent flag solution.
There is an important principle: each consistent flag solution G of Equation (1) produces a solution of Equa-
tion (1) via the map

G(w,p)>G (Qd)=G"(Q)=H(Q), (5)

and vice versa: the restriction functions of any solution of Equation (1) onto the great circles is a consistent flag
solution.

Hence, the problem of finding a solution reduces to finding a consistent flag solution.

To solve the latter problem, the present paper applies the consistency method first used in [13]-[15] in an
integral equations context.

We denote: e[Q (D]—the plane containing the origin of R?, direction QeS?, @ determines rotation of
the plane around Q, B[Q CD]—prOJectlon of BeB ontothe plane e[Q (D] R"(Q, ®)—curvature radius of
aB[Q CD] at the point with outer normal direction Qe S. It is easy to see that

R'(Q®)=R(a",p),

where (Q,®) isdualto (@,¢).
Note that in the Problem 1. uniqueness (up to a translation) follows from the classical uniqueness result on
Christoffel problem, since

Rl( _1 JAZn * ©)

Equation (1) has the following geometrical interpretation.
It is known (see [11]) that 2 times continuously differentiable homogeneous function H defined on R? , 1S
convex if and only if

+[H, (go)]"w >0 forevery weS? and p€S,, )

where H (-) isthe restrictionof Honto S, .

Soincase F >0, it follows from (7), that if H is a solution of Equation (1) then its homogeneous extension
is convex.

It is known from convexity theory that if a homogeneous function H is convex then there is a unique convex
body B < R* with support function H and F(a), go) is the projection curvature radius function of B (see
[11]).

The support function of each parallel shifts (translation) of that body B will again be a solution of Equation
(1). By uniqueness, every two solutions of Equation (1) differ by a summand (a,~) defined on S?, where
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a e R®. Thus we have the following theorem.

Theorem 1 Let F be a positive function defined on F . If Equation (1) has a solution H then there exists a
convex body B with projection curvature radius function F, whose support function is H. Every solution of Equ-
ation (1) has the form H (-)+(a,-), where a e R?, being the support function of the convex body B+a.

The converse statement is also true. The support function H of a 2-smooth convex body B satisfies Equation
(1) for F =R, where R is the projection curvature radius function of B (see [16]).

The purpose of the present paper is to find a necessary and sufficient condition that ensures a positive answer
to both Problems 1,2 and suggest an algorithm of construction of the body B by finding a representation of the
support function in terms of projection curvature radius function. This happens to be a solution of Equation (1).

Throughout the paper (in particular, in Theorem 2 that follows) we use usual spherical coordinates v,z for
points S® based on a choice of a North Pole and a reference point =0 on the equator. The point with coor-
dinates v,z we will denote by (v,7), the points (0,7) lie on the equator. On S, we choose anticlockwise
direction as positive. On the plane @* containing S, we consider the Cartesian x and y-axes where the direc-
tion of the y-axis § is taken to be the projection of the North Pole onto «*. The direction of the x-axis x
we take as the reference directionon S, and call it the East direction. Now we describe the main result.

Theorem 2 Let B be a 3-smooth convex body with positive Gaussian curvature at every point of 6B and R
is the projection curvature radius function of B. Then for Qe S? chosen as the North pole

H(Q) 417t DZR((O'T)L#’)COSQDd(ﬂ}dT
+&J.OZHD%R((O'T)L ,(0)((7I+240)C05¢)—25in3 w)d¢)i|dz- ®)
on? ;szvd V[ Az R((v,2) g )sin® odo

is a solution of Equation (1) for F=R.On S, we measure ¢ from the East direction.

Remark, that the order of integration in the last integral of (8) cannot be changed.

Obviously Theorem 2 suggests a practical algorithm of reconstruction of convex body from projection curva-
ture radius function R by calculation of support function H.

We turn to Problem 1. Let R be the projection curvature radius function of a convex body B. Then F =R
necessarily satisfies the following conditions:

a) For every weS® and any reference pointon S,

.[DZHF (,p)sinpdep = _[OZKF (w,p)cospde =0. )

This follows from Equation (1), see also [16].
b) For every direction Qe S* chosen as the North pole

TR ((no)y)], dro=0, (10)

where the function F is the image of F (see (3)) and y is the direction of the y-axis on (v,r)L (Theorem 5).
Let F be a positive 2 times differentiable function defined on F . Using (8), we construct a function F de-
fined on S*:

IE(Q) _ i ozn{jogF ((0, z'),go)COS(pd(D:|dT

+%J'02"D_2;F ((0.7).0)((n+2p)cosp—2sin’ p)dg |dz (11)

1 (Zsinv
— |2
212 %0 cos?v

d vj‘oznd TIOMF ((v, 7), gz))sin3 pdo

Note that the last integral converges if the condition (10) is satisfied.
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Theorem 3 A positive 2 times differentiable function F defined on F represents the projection curvature
radius function of some convex body B if and only if F satisfies the conditions (9), (10) and the extension (to
R?) of the function F defined by (11) is convex.

2. The Consistency Condition

We fix @eS® and try to solve Equation (1) as a differential equation of second order on the circle S,. We
start with two results from [16].
a) For any smooth convex domain D in the plane

h(p)=['R(y)sin(p-y)dy, (12)

where h(¢) is the support function of D with respect to a point seaD. In (12) we measure ¢ from the
normal direction ats, R(y) isthe curvature radius of oD at the point with normal direction y .
b) (12) is a solution of the following differential equation

R(¢)=h(p)+h"(¢). (13)
One can easy verify that (also it follows from (13) and (12))
G(a),(p)zﬁpF (o,p)sin(p-y)dy, (14)

is a flag solution of Equation (1).
Theorem 4 Every flag solution of Equation (1) has the form

d(w,p)= I:F (o,y)sin(¢p—y)dy +C(w)cosp+S(w)sing (15)

where C, and S, are some real coefficients.
Proof of Theorem 4. Every continuous flag solution of Equation (1) is a sum of G+ g,, where g, isaflag
solution of the corresponding homogeneous equation:

H,(9)+[H,(¢)], =0 ¢eS,, (16)
for every o eS*. We look for the general flag solution of Equation (16) in the form of a Fourier series
%b(@9)= > [C,(@)cosnp+S, (w)sinng]. 17)
n=01,2,--

After substitution of (17) into (16) we obtain that g, (w,¢) satisfies (16) if and only if
o (@,¢) =C,(®)cosp+S, (w)sing.

Now we try to find functions C and S in (15) from the condition that g satisfies (4). We write g(®,) in
dual coordinates i.e. g(w,¢)=g"(Q,®) and require that g"(Q,®) should not depend on @ for every
QeS*,ie forevery QeS?

(¢°(®)), =(G(@.0)+C(w)cosp+S(w)sing), =0, (18)
where G(w,p) was defined in (14).
Here and below (-)'CD denotes the derivative corresponding to right screw rotation around Q. Differentiation

with use of expressions (see [14])

in ;
= sihg , @y =—tanvsing, vy, =—Cos e, (19)
cosv

after a natural grouping of the summands in (18), yields the Fourier series of —(G(a), q)))’q’. By uniqueness of

the Fourier coefficients
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(C(a)))v+ o~y ~+tanvC(w :—_[ (o,p)c0s2¢pdy
(c(e)). (Sci)“s’)v)f anvC () = — ["A,0)do
(s(a)))'v—%nanvs :—j (w,0)sin 2pdg, (20)
where
A(w,p)= I:[F (a),l//)'(bsin((p—w)+ F (a),l//)COS(w—W)(o&)}dl/l. (21)

3. Averaging

Let H be a solution of Equation (1), i.e. restriction of H onto the great circles is a consistent flag solution of Eg-
uation (1). By Theorem 1 there exists a convex body B e B with projection curvature radius function R=F,
whose support function is H.

To calculate H (Q) fora QeS* we take Q for the North Pole of S?. Returning to the Formula (15) for
every w=(0,7)eS, we have

z e
H(Q)=JUZR(wi,l/,)sln(E—y/jdl//+S(a)), (22)
We integrate both sides of (22) with respect to uniform angular measure dz over [0, 2m) to get
2aH (Q) = J;"[2R((0,7)" p Jcoswdydr + [ "5 ((0,7))dz. (23)

Now the problem is to calculate

7S ((0.7))dr =5(0). (24)
We are going to integrate both sides of (20) and (21) with respect to dr over [0,27:). For w=(v,7),

where ve{o,g] and 7e(0,2r) we denote
S_(v)z OZKS ((v,r))dz', (25)

v)- Iozndrj.ozn{ﬁ[R(a)i,y/) o sin(p—y)+ R(a)i,y/)COS((p—W)(p&):ldw:'Sin 2pdg. (26)
Integrating both sides of (20) and (21) and taking into account that

_[Ozn(C (v, r))rr dr=0
for ve[0,7/2) we get
?(v)+tan vS(v)=A(v), 27)

i.e. a differential equation for the unknown coefficient S_(v) .
We have to find S (0) given by (24). It follows from (27) that

cosv cosv
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Integrating both sides of (5.1) with respectto dv over [O, n/2) we obtain

5(0)= S(v) [z AW) g, (29)
cosw|£ ° cosv
S(v)

Now, we are going to calculate

cosv

i
2

It follows from (15) that

TES_(V)=IOZRLZ“[HQ(@)—J:R(a)l,l//))sm((p—(//)dl//j|$in¢)d(0d2’
2n 27 2n p2n (30)
:J'O . Hw((p)sin(pd(odr—%jo fc R(a)l,l//)((ZR—l//)COSl//+Sinl//)dl//d1'.

Let €S, be the direction that corresponds to @ €[0,2x), for w=(v,7). Asa point of S?, let ¢ have
spherical coordinates u,t with respect to Q. By the sinus theorem of spherical geometry

cosvsing =sinu. (31)
From (31), we get
(u), = =—sing. (32)
2

Fixing 7 and using (32) we write a Taylor formula at a neighborhood of the point v =n/2:

H,. (#)=H((0.p+7))+H,((0,p+7))sin ¢(§—vj+ o(g—vj. (33)

Similarly, for y [0,2r) we get

R((v.e) v )= R{(g,er,l//+7J

X (34)
+R’ (E rj +7 |sin (E—vj+o Ty
NeE 4 4 5 > .
Substituting (33) and (34) into (30) and taking into account the easily establish equalities
2n p2n .
IO IO H((O,go+r))smgodgodr=0
and
L
2n 021 T .
J'O .|'0 R((E,rj ,yx+r}((2n—y/)cosz//+S|m//)dy/dr:0 (35)
we obtain
S_(V) 1 ¢2np2n R
lim—~ == H((0,0+7))sin’ pded
vo% COSV n'[(’ 0 V(( ? T)) G
1 2n 21 , T - R .
51 IO R! E,r WAHT Slnl//((ZTE—l//)COSl//+Slnl//)dl//dz' (36)

- [PH )= [[R () )] o

Theorem 5 For every 3-smooth convex body B e B and any direction Q eS?, we have
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J.Ozn[R* ((V 7), y)]'vz0 dr =0, (37)

where y is the direction of the y-axison (v,7) .
Proof of Theorem 5. Using spherical geometry, one can prove that (see also (1))

[R((v.2)y)] , =[H((m2)+HL ()],

= [H ((v,r))+ H” 12 —H! tan v} (38)

cos’ v o

!’

= [H:T] v=0"
where H is the support function of B. Integrating (38), we get

2n * ! 2n v
Io [R ((v,‘r), y)} o dr = Io [H”] Vzodz' =0.
4. A Representation for Support Functions of Convex Bodies

Let BeB beaconvex bodyand QeR?®.By H, Wwe denote the support function of B with respect to Q.
Theorem 6 Given a 2-smooth convex body BeB there exists a point O € R® such that for every
QeS? chosen as the North pole

[ [He: ((v.7))],_ dz=0. (39)

Proof of Theorem 6. For a given B and a point Q e R?, by K, We denote the following function defined
on §*

KQ(Q)ZJ[ (( ))]Vo

Clearly, K, isa continuous odd function with maximum (Q)
K(Q)= max o (Q).

It is easy to see that K(Q)—»oo for |Q|— . Since K(Q) is continuous, so there is a point O" for
which

K(0™)=minK(Q).
Let Q" be adirection of maximum now assumed to be unique, i.e.
K(0")=maxK . (Q)=K_.(Q").

Qes?
If K(O ) 0 the theorem is proved. For the case K(O ) a>0 let O be the point for which
0’0" =£Q". Itis easy to demonstrate that H .. (Q)=H . (Q)- ( ) hence for a small & >0 we find

that K(O") =a-2me, contrary to the definition of O". So K( )= 0. For the case where there are two or

more directions of maximum one can apply a similar argument.

Now we take the point O of the convex body B for the origin of R®. Below H,- we will simply denote by
H.

By Theorem 6 and Theorem 5, we have the boundary condition (see (36))

5()

Ccosv

-0. (40)

K

Substituting (29) into (23) we get
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A(V)
2nH ( J IZR( (0,7) l//)COSl//dl//dZ' mdv
—.[ IZR( 0,7) ,l//)COSl//dl//dT——IO o5y (41)
xj;"IOZR[J:[R(wL,t//)®Sin(¢)—t//)+ R(af,w)cos((p—t//)(pé}dw}sin2(0d(pdz'.
Using expressions (19) and integrating by d¢ vyields
27tH j IZR(OT W )COSl//dl//dT
, (42)
+— k C(;svvjzn r'fzn[ ( J',l//)v I +R(a)l,y/)tanvll}dt//,
where
~ i (Lt sin?
" :J;nsianocos(go—l//)sin(pdg):{(Zn l/;)COSy/+SInl//( :sm W)_Singl//]v
and
i ~ . .,
L | (2n-y)cosy siny(L+sin®y)
I __[W sin 2¢)sm(¢)—y/)cos¢)d¢)_{ 7 + 7 :
Integrating by parts (42) we get
1.2 con, con invsin®
2nH (Q I IZR( (o, r W )COSl//dl//dT—;JOZdVJj dr‘[o2 R(wi,y/)%dy/
1.2, (on n (43)
—;J.Ozdr.[o R((O,T) ,1//)Id!//+|lnj[ncosajzd I ( W )'dl//
Using (34), Theorem 5 and taking into account that
_[Oznldt//:O
we get
e 1%, c2n, con sinvsin®
2nH (@)= [;"[2R((0,7)" ,://)coswd pdz——Jzdv[de[R(o* p) =5 Fdy "

——jzdrj ( v )Idz//

From (44), using (9) we obtain (8). Theorem 2 is proved.

5. Proof of Theorem 3

Necessity: if F is the projection curvature radius function of a convex body B e B, then it satisfies (9) (see
[16]), the condition (10) (Theorem 5) and F defined by (11) is convex since it is the support function of B
(Theorem 2).

Sufficiency: let F be a positive 2 times differentiable function defined on F satisfies the conditions (9), (10).
We construct the function F on S* defined by (11). There exists a convex body B with support function F since
its extension is a convex function. Also Theorem 2 implies that F is the projection curvature radius of B.
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