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Abstract 
Linear amino acids covalently supported on graphene sheet were employed as catalysts for 
asymmetric aldol reactions between cyclohexanone and aldehydes (aliphatic and/or aromatic) in 
a batch type reactor in the presence of water. The reactions were found to exhibit high yield as 
well as excellent ee value. Additionally, the catalysts were found to be truly heterogeneous and 
eco-friendly. 
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1. Introduction 
Recently, linear amino acids have been extensively investigated as effective homogenous catalysts in asymmet-
ric aldol reactions between ketone and aldehyde in the presence of polar solvents [1]-[3]. Several problems are 
usually encountered in these homogeneous catalytic systems, which include the presence of a suitable polar sol-
vent, large catalyst loading and the catalyst’s regeneration and its extended life span [4]. To answer the issues 
inherent to the use of amino acids in homogeneous systems, researchers intensively exploited suitable alterna-
tives to replace these environmentally malignant systems [5]. In this scenario, immobilization of amino acids on 
a suitable support could simplify the separation of products, and facilitate the recovery and reusability of the 
catalysts [6]. A great deal of research has been focused on the use of immobilized amino acids as heterogeneous 
catalysts, such as poly (vinyl alcohol)-graft-poly (ethylene glycol)-supported hydroxyl proline for aldol reactions 
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with stereo selectively in a variety of solvents, as well as in neat substrates [7]. Similarly, Henseler et al. [8] has 
demonstrated the use of polystyrene-supported threonine for asymmetric aldol reactions, with satisfactory yield 
and ee value. The recovery of the catalyst without loss of its activity and its subsequent re-usability is an impor-
tant finding in both studies. These studies motivated us to investigate the efficiency and capability of covalently 
immobilized linear amino acids on graphene sheet for asymmetric aldol reactions between cyclohexanone and 
aromatic and aliphatic aldehydes under eco-friendly reaction conditions. 

2. Experimental 
2.1. Preparation of Catalysts 
Graphene sheet (supplied by Chengdu Organic Chemicals Co. Ltd.) were functionalized by modified Hummer 
and Offeman’s method [9]. 1 g of graphene sheet was sonicated in 50 mL solution of HNO3 (5 M) and H2SO4 (5 
M) in the presence of KMnO4 (6 g) as an oxidant, for 30 min at 30˚C. The graphene sheet was then washed with 
hot double distilled water (total 4 L) by centrifugation and decantation until the pH was nearly neutral. The 
sample was filtered through a 0.2 µm PTFE membrane. Finally it was washed with n-hexane and dried over-
night under low pressure. The functionalized graphene was refluxed with 20 mL thionyl chloride for 24 h at 
70˚C to convert the surface bonded carboxylic acids to acylchloride. The SOCl2 was removed by distillation 
under low pressure and the resulting solid was dispersed in THF, and treated with BOC-L-alanine in the pres-
ences of pyridine for 12 h in an inert atmosphere. Finally, N-BOC group was deprotected by hydrolysis with tri-
floroacetic acid in dimethyl formamide. The resulting mixture was separated by centrifugation, washed with 
ethanol, and finally dried overnight under low pressure to yield L-alanine covalently immobilized on graphene 
sheet. FT-IR spectrum of functionalized graphene shows several peaks, viz, at 3405 cm−1 for (O-H), at 1725 cm−1 
for (C=O), and peaks at 1360, 1220, 1050 cm−1, indicate respectively (C-O), epoxy, and alkoxy, respectively. 
While peaks at 1620 cm−1 and 1215 cm−1 confirm the presence of (C=C) and (C-OH), respectively. (O), and 
(OH) groups are not shown in the Scheme 1, because the study was focused only on (-COOH) group, which was 
converted into -COCl by SOCl2. A new peak was encountered at 650 cm−1, which accounts for (C-Cl). 

Notably, new peaks were observed at around 1248, 1310, 930, and 1640 cm−1, which reveal the presence of 
(-C-O-C-), (C-N), (C-C), and acid amide groups, respectively. This entire process was repeated for preparing all 
other catalysts. Hereafter, the catalysts are referred to as catalyst A, B, C and D where A, B, C and D are 
L-alanine, L-serine, L-valine, and L-arginine covalently immobilized on graphene sheet respectively. 
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Scheme 1. A generalized scheme for covalently immobilizing amino acids on graphene sheet. 
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2.2. Catalytic Activity 
50 mg of catalyst, 10 mL distilled water, 3.3 equiv cyclohexanone and 1.0 equiv aldehyde were loaded to three 
necked batch reactor. The reaction mixture was stirred at 40˚C for 24 hours as shown in Scheme 2. The reaction 
was periodically monitored by TLC (Rf = 0.27 for 2-(hydroxy(phenyl)methyl) cyclohexanone in ethyl ace-
tate/n-hexane solvent system). Finally, the mixture was extracted with ethyl acetate. Column chromatography on 
silica gel using ethyl acetate/n-hexane (1:9) gave pure aldol product while anti/syn was determined by 1H NMR 
analysis, and ee value was determined by Agilent 1100 HPLC with Daicel Chiralpak AS, OJ, and AD columns. 

3. Results and Discussion 
Remarkable improvement in the catalytic potential of linear amino acids has been attained by immobilizing 
them covalently on functionalized graphene. Therefore, a persistent struggle for developing new methodologies 
to synthesize chiral heterogeneous catalysts that could provide high % yield and ee value, is underway [10]. We 
have been successful in developing a new pathway for the immobilization of linear amino acids covalently, on 
graphene sheet. The method comprises three-steps. The graphene sheet is first subjected to Hummer and Offe-
man’s method of oxidation to develop (-COOH) and then these groups are converted into (-COCl) groups by 
treating with SOCl2. The second step involves the treatment of surface modified graphene with BOC-amino acid 
by refluxing with THF/pyridine. BOC-amino acid ensures that a covalent bond develops through the -COOH 
group of the amino acid and not through -NH2 group. In the last step, the amino acid is deprotected by hydroly-
sis with trifluoroacetic acid in DMF. In the covalent approach, the amino acids immobilized on graphene afford 
truly heterogeneous asymmetric catalysts. FTIR was used to elucidate the covalent immobilization between the 
hydroxyl group of BOC amino acids and the acyl-functionalized graphene sheet. 

Catalysts A, B, C and D are capable of catalyzing the direct asymmetric aldol reactions in aqueous medium 
through enamine mechanism. The presence of water in the aldol reaction increases the rate of reaction in com-
parison to the reaction carried out under solvent free condition. An explanation to this effect is that the presence 
of water facilitates the hydrolytic detachment of amino acid from the resulting product of the aldol reaction 
[11]-[14]. The aldol reaction of cyclohexanone and benzaldehyde in the presence of catalyst “A” was chosen as 
a model reaction to evaluate the efficiency of catalyst A as a chiral heterogeneous catalyst. The result revealed 
that the desired aldol adduct was formed with a 85% yield, 94% ee and 6.7:1 dr. The same reaction under the 
same conditions was also found to be catalyzed by catalysts “B” and “C” and the results were (72% yield, 93% 
ee and 6:1 dr), and (84% yield, 91% ee and 16.5:1 dr), respectively. However, the same reaction under the same 
conditions was not very productive in the presence of the catalyst “D”, as the results were a low yield of 58%, 
and an ee value of 10%, indicating that the product is nearly a racemic mixture as presented in Figure 1. 

These catalysts were also used for aldol reaction of cyclohexanone and m-nitrobenzaldehyde, affording both 
high % yield and % ee value as shown in Figure 2. The reaction under the same conditions in the presence of 
the catalyst “A” generated excellent results, viz, 94% yield and 99% ee value. These remarkable results appear 
probably due to the effect of nitro group attached to the benzaldehyde. These sumptuous results prompted to 
probe the efficiency of other catalysts for the same reaction. The results obtained with catalysts “B”, “C” and “D” 
were (85% yield and 96% ee), (97% yield and >99% ee) and (96% yield and 94% ee), respectively. 

Experiments were extended further to study the catalytic efficiency of these catalysts for aldol reaction be-
tween cyclohexanone and 3-methylbutanal. Again the results were quite impressive both in terms of % yield and 
ee value as shown in Figure 3. The catalyst “A” catalyzed the aldol reaction between cyclohexanone and 
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Scheme 2. Model reaction of cyclohexanone and benzaldehyde to 2-(hydroxy(phenyl) methyl) 
cyclohexanone, catalysed by L-alanine covalently immobilized on graphene. 
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Figure 1. Catalytic efficiency of L-alanine, L-serine, L-valine, and L-arginine 
covalently supported on graphene sheet for asymmetric aldol reaction be-
tween cyclohexanone and benzaldehyde. 
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Figure 2. Effect of nitro group attached to benzaldehyde on % yield and % ee 
values in the aldol reaction of unmodified ketone with m-nitrobenzaldehyde, 
using L-alanine, L-serine, L-valine, and L-arginine covalently supported on 
graphene sheet as heterogeneous catalysts. 

 
3-methylbutanal generating 65% yield and 80% ee while in the presence of catalysts “B”, “C” and “D”, the 
same reaction resulted in (53% yield and 78% ee), (58% yield and 81% ee) and (44% yield and 56% ee). 

The stereochemistry of the β-hydroxy group of the aldol adducts derived by L-linear amino acid supported on 
graphene sheet is R as demonstrated by chiral-phase HPLC analysis, optical rotation and compared with the lit-
erature [15]. The relative stereochemistry of cyclic aldol products was anti as determined by NMR spectroscopy 
and compared with literature [15]. 

Linear amino acid covalently immobilized on graphene sheet catalyzed asymmetric intermolecular aldol reac-
tion of aldehyde and ketones through enamine route [16] as shown in the Scheme 3. The donor ketone reacts 
with immobilized amino acid, resulting in enamine linkage. Next, the acceptor aldehyde combines with the 
chiral enamine. The resulting intermediate on hydrolysis gives enantiomerically enriched aldol product, and the 
catalyst is recycled. The presence of water promotes the rate of reaction probably by facilitating the hydrolysis  
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Figure 3. Efficiency of heterogenized L-alanine, L-serine, L-valine, and L-arginine on graphene sheet for aldol reaction be-
tween cyclohexanone and 3-methylbutanal. 
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Scheme 3. Reaction route. 
 
of the intermediate of the enamine catalytic cycle. These results provide clear evidence that acyclic amino acids 
covalently immobilized on graphene are remarkable chiral organo-catalysts, capable of catalyzing the direct 
asymmetric aldol reaction with excellent reactivity and stereoselectivity. Throughout the study, water was the 
only solvent. The catalysts showed good stability in solvent and recycled by simple filtration and used for five 
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runs without coming across any loss in their catalytic efficiency. 

4. Conclusion 
Linear amino acids covalently supported on graphene sheet can function as remarkable heterogeneous organo- 
catalysts for the direct asymmetric aldol reactions between cyclohexanone and aldehydes with excellent reactiv-
ity and stereoselectivity. All these catalysts generated high yield as well as high ee value for m-nitrobenzalde- 
hyde in comparison with those for benzaldehyde and 3-methylbutanal. This improved efficiency of catalysts in 
the case of m-nitrobenzaldehyde most probably due to the presence of electron withdrawing group. In case of 
reaction between cyclohexanone and 3-methylbutanal, the catalysts manifest moderate % yield and ee value. All 
these findings provide sufficient evidence for the effectiveness of linear amino acids supported on graphene 
sheet as useful, eco-friendly and heterogeneous catalysts for direct asymmetric aldol reactions. 
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