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Abstract

Classical chaotic behavior in diatomic molecules is studied when chaos is driven by a circularly
polarized resonant electric field and expanding up to fourth order of approximation the Morse’s
potential and angular momentum of the system. On this double resonant system, we find a weak
and a strong stationary (or critical) points where the chaotic characteristics are different with re-
spect to the initial conditions of the system. Chaotic behavior around the weak critical point ap-
pears at much weaker intensity on the electric field than the electric field needed for the chaotic
behavior around the strong critical point. This classical chaotic behavior is determined through
Lyapunov exponent, separation of two nearby trajectories, and Fourier transformation of the time
evolution of the system. The threshold of the amplitude of the electric field for appearing the chaotic
behavior near each critical point is different and is found for several molecules.

Keywords

Classical Chaos, Double Resonace, Nonlinear Dynamics, Diatomic Molecules

1. Introduction

Beside the clear importance of the study of diatomic molecules [1] and [2], one of the actual interests in classical
chaotic behavior of diatomic molecules, due to double nonlinear resonances, is the connection with its associated
quantum dynamics [3]-[5]. For a quantum system associated to non chaotic classical one, it is mostly believed
that classical dynamical behavior must occur for large quantum numbers or high value of the action variable [6]
[7]. However, for the quantum counter part of a chaotic classical system the situation can be very different [8]
[9], where the associated action or quantum number when chaos has his manifestation on classical system is
small [10] [11]. In this case the “quantum manifestation of chaos” is rather a subtle matter. These studies have
been done so far using the coordinates of angle-action in the Hamiltonian formalism of diatomic molecule sys-
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tem [12], where a somewhat artificial nonlinear action term is introduced on the system [10], keeping the angu-
lar momentum at zero approximation. However, the nonlinear terms can be also introduced naturally by taking
higher terms on the approximation on the potential energy for large amplitude of oscillations of the system, and
by doing the same type of approximation with the angular momentum of the systems. On the other hand, when
nonlinear resonances appear on a classical system, chaotic behavior of the system is determinated by Chririkov’s
criteria of overlapping resonances [13] [14]. However, this criterion is not convenient for our study since one of
the resonances is weak (small stability region in phase space) and the other is very strong (large stability region
in phase space). To determine the chaotic behavior on the system we use Lyapunov exponent, separation of two
nearby trajectories, and Fourier transformation of the time evolution of the system. In this study we show that it
is possible to observe other types of chaotic behavior where chaos can depend on conditions around the critical
points (initial conditions chaotic behavior), and we proceed in the following way: we establish the evolution eq-
uations of a diatomic molecule within a circular resonant electric field for large amplitude oscillations, making
up to fourth order of approximation on the potential interaction between atoms and the angular momentum of
the system. We solve numerically the resulting Hamiltonian equations and calculate the Lyapunov, distance be-
tween two nearby trajectories, and Fourier transformation to determine whether or not the trajectory is chaotic or
not [15]. For one selected diatomic molecule, we choose initial conditions near the weak and the strong critical
points and increase the magnitude of the electric field until the chaotic behavior appears on each case (experi-
mentally, this chaotic behavior can be measured by electron diffraction technique [16]). Finally, the same study
is done in other diatomic molecules.

2. Equation of Motion

The study of diatomic molecule is a typical two bodies problem with radial force as shown in Figure 1, where
m, and m, are the masses of the two atoms, r and r, are their position, r =r, —r 1is the relative coordi-
nate, and R = (mr, +m,r,)/(m, +m,) is the center of mass coordinate. It is well known that with these last
two coordinates, the equations of motion are reduced from 6-D to 3-D problem, and the equations are written as
.. . oU
(m +my,)R=0,  pi=——F, (1)
or
where gr=mm,/(m +m,) is the reduced mass of the system, and U =U(r) is the potential due to the
central force between de molecules.
Due to the symmetry under rotation of the system, the relative motion is reduced to 1-D problem and its
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Figure 1. Two bodies central force case.
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equation is given in spherical coordinates by
HF ==V (7). @

where the effective potential is
2

12

V. .(r)= +U(r I? = 12 3
efff() 2,ur2 () Sln9 ()
being / the angular moment of the system with
l,=pr’0 1, =pr’sin’ 6p. 4)
The constant of motion (energy) associated to this system is
R PR
K(r,r)=—wr + +U(r), 5
(1) =347 4 5t U ) ®
and its Lagrangian is
L -U(r) (6)
2 H 2ur’ ’
or
L= g(r +7r20% + ¢ sin 0) U(r). (7)
Therefore, its Hamiltonian is
2 2
L DUy with B = ®)
2u 2ur’

3. Approximation on Potential and Angular Moment

Let 7, be the minimum of the effective potential U (r), and let us expand the functions U (r) and 1/
around this point. Defining the variable & as &=r—r, (with &/r, <1), it follows that
U"(l") s Um(l"a) 3+Uiv(ro)

2!§+ 3!5 4!

U(E)=U(r,)+U'(r,)E+ Egen, )

and
1 1 B

1
= -

°°(-)(k+1)§
ro(&+n) (1+§/r) T (10)

Since one has that U’ (ro) =0, let us define w, (the natural frequency of oscillation of the molecule) from the

relation p’ [2=U"(r,) /2. So, our Hamiltonian a fourth order is

=L e {Hz( DN ]+U"’(n) o U0 o

2p 2 3! 4

0

where one has that P, =P, .
The potential associated to the molecular interaction U (r) is just the Morse’s potential [17],

U(r)=D(1—e“(""o))2, (12)

where D, r,, and a are parameter determined for each molecule. The parameter D represents the disso-
ciation energy of the molecule and the deep of the potential, » is the minimum of this potential and the

o

equilibrium distance of the atoms, and a is related with the width of the potential, and it follows that

498
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4
U(r,)=0, U'(r,)=0, U"(r,)=2a’D, U"(r,)=-a'D, U(iv)(r0)=7li2D. (13)
Then, the above Hamiltonian can be written of the form
H(&P.1)=H,(&P.1)+W(E1), (14)
where H, and W are defined as
Pl P
H,(EP,1)=—+—ua’& + 15
(G Pl) = el (15)
and
W(& )= r _§+ﬁ_£+ﬁ —a3D§3+la4D§4 (16)
77 G A A A A AN
Let us recall that /> can be written in terms of the generalized linear momenta as
2
I =P +— > P, = 1?0, P = ur*gsin’ 6. (17)
sin” @
Then, Hamilton’s equations of motion are
gt (18)
=3
. 7 r 2 6& 128 208
P.=—uw’é+3a’°DE* ——a*DE ———| - =+ =2~ + , 19
& /u oé: § 3 é: 2"”;2 ro 7"02 }'f 7'04 ( )
. P 2 3 4
0=—2 l—§+%—£+% (20)
Hr, Lo 7 7
2
P = cosd F _£+£_4_§3+£ 1)
sin’® @ ur’ oo o ’
P 2 3 4
Z :z—u[l_g"'%_i*'%j (22)
ur, sin” 6 r,or r r
P, =0 (23)

From the last equation one has that P, = constant , and the total angular momentum / is another constant of
motion. Thus, by choosing the motion at @ = m/2, the dynamical system is reduced to the following two dimen-
sional autonomous system

._FR
S=—, (24)
2u
. 7 & 2 6& 1287 2087
P. =—uw’é+3a’DE* ——a'DE ———| ——+—2— + ) 25
e 7 W R )

The set of critical points for this system, Q_ = {(§ /.,ng ) eR

sz,Pf :O} , s given by

7 P 2 6&, 128 208
QC:{(gj,o)‘—,u(ojgj+3a3D§f—§a4D§?——zﬂr2 {_r_Jrr_zj_ ,ﬁj i ,,4j =0 (26)

that is, the critical points are located over the & -axis, and they are determined by the real roots of a third order
polynomial, which means that one will have one or three real roots, depending on the values of the coefficients.



G. V. Lopez, A. P. Mercado

As it is known [18] [19], the nature of this critical points is determined by the trace and determinate of the
Jacobian matrix,

o o ) i
; o¢  OF; 2u
i af ; = 2
ok o —u@! +6a’DE, —Ta' DE} — ! S(6/r) —24&, [r) +60& [11) 0
o oF. ), 2ur; ‘ ' :

Since one has that tr(J j)=0, this implies that the critical points are center points (if det(Jj>>O) or

hyperbolic points(if det(J ; ) <0). For example, for the BeO molecule (Berilium Oxide), the parameter are (in
MKS units)

a=2.12001x10" m™, D =8.40078x107" J,

10 27 (27)
r,=127002x107" m, 4=9.56976x10"" kg,

and its characteristic frequency is

o, =4.47075x10" Hz (28)
The set critical points is Q, = {(51,0),(52,0),(53,0)} , where &,,j=1,2,3 are given by
£ =537006x10"" m, & =8.01955x10" m, & =5.98396x107" m, (29)
and one has

det(J,)>0, det(J,)<0, det(J;)>0. (30)

Therefore, (51,0) and (f ,0) represent centers, and (52,0) represents an hyperbolic point. Some tra-
jectories on the phase space (“,‘,P‘f can be seen in Figure 2 for this molecule, obtained numerically by solving
(24) and (25). These trajectories represent the regular behavior of the system (Lyapunov exponent is negative,
two nearby trajectories remain always nearby, Fourier transformation of any of these trajectories has only
peaks).

The values fj, j=12,3 for some diatomic molecules are shown on the table of appendix A, where the
Morse’s parameters associated to each molecule were taken from [17].

4. Adding Electric Field and Non Autonomous Dynamical System

Diatomic molecules with a dipolar moment p can interact with an external electric field. The dipole electric

Figure 2. Trajectories on the phase space for the molecule BeO.
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moment is just the charge times the distance between atoms, p = gr, where in spherical coordinates
r =r(sin@cos@,sin@sin p,cos F) . If the electric field E is chosen of the form E =(E, cos ot, E, sin wt,0), the
energy of interaction is U =—p- E , and the Hamiltonian of interaction is then

H,, =—q(r,+&)E,sin@cos(p—art) (31)
Let d, be the average of dipolar moment over the angles and time, d, =gqr, <sin9005(go—a)t)>, and let us

absorb the constant term —d E, on the definition of the Hamiltonian. Thus, one consider the Hamiltonian of
interaction as

H,, =—-qE,sinfcos(p—ot). (32)
In this way, using (14), (15) and (16), the full Hamiltonian is
H(&P. Lt)=H, (&P 1)+ W (E1)+H,, (£,0.1), (33)
and the equations of motion are now
._k
S==, (34)
2pu
Pg =qE, sinfcos(p—ot) - uw’é +3a’ DE
2 2 3 (35)
T ipe ! 2 _3+§_12§ +2o4§ ’
3 2ur; ror v r
. P 2 3 4
0- L1 2,3 220, 580 0
lLlr[I rU r() rD rU
P, =qE, cos@cos(¢— ot )
cosf B} (28 3£ 4g 5& (37)
t—— S|t S5t
sin” @ ur; [ r r
: F, 28 3ET 48 5&°
=— e |j-Z=ife T 400 38
v ur? sin’ 9( oo %)
P, =—qE,¢sinOsin(p—ot). (39)

By choosing the study of motion at @ = /2 as before, one obtains that P, = constant, and system is reduced
to a four dimensional non autonomous system

_”
S=—, (40)
2u
P. = gE, cos(¢ - at)— pw} & +3a’ DE’
2 2 3 (4])
Tppp - L[ 2,60 128 200
3 2#”;} rl) r{) r{) r{)
P 2 3 4
Q= “’2 [1_§+%_%+%j (42)
ﬂro ro r() rD ro
P, =—gE,¢sin(p-ot). (43)

These equation are solved numerically to find the dynamical behavior of the system. What we are interested
in is on the threshold of the intensity of the electric field E, for the system to become chaotic. To do this, we
use the Poincaré stroboscopic map [19], Lyapunov parameter [19], distance between two nearby trajectories, and
the Fourier transformation to see the the power spectrum [19]. If Lyapunov exponent of the trajectory is positive,
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if the distance between two nearby trajectories grows, and if the Fourier transformation of the trajectory has a
continuous component, one can be sure that the trajectory is chaotic.

5. Numerical Results

Let us consider the diatomic molecule BeO and the initial conditions near the weak critical point &, with &
between 5x107° m to 5.6x10"° m,and with P.=0, #=mn/2, P, =0.01 kg-m?/sec, ¢=0.01,

P, =0.01kg-m’/sec, and @ =a, =(a/n)-(D/ 2/1)1/2. Taking 10 different initial conditions &, on the men-

tioned range of values near & point, we make the analysis of each trajectory with the tool mentioned on the
last section as a function of the magnitude of the electric field E, . For electric fields such that ¢E, <10™° N
the trajectories are quasi-periodic, the trajectories on the phase space (f,Pf) are closed ellipses-like curves, the
Lyapunov is not positive, trajectories which are initially infinitesimally separated remain infinitesimally sepa-
rated, and the Fourier transformation show only peaks (as it was mentioned before where the regular motion was
shown on the phase space). These elements show that the behavior of the system is regular at these magnitude of
electric field.

For an intensity of the electric field such that gE, =1x107" N, Figure 3 shows the Lyapunov as a function
of time, which becomes positive. Figure 4 shows the Poincaré map (stroboscopic map), which becomes diffused.
Figure 5 shows the separation (as a function of time) between two nearby trajectories, with sudden very big va-
lues, and Figure 6 shows the discrete Fourier transformation of one of the ten trajectories, showing a continuos

0.2 T

< —02H —

—0.4 1 _

—0.6 |+ _

1 | 1

0 500 1000
t

Figure 3. Lyapunov exponent behavior.
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3

Figure 4. Poinceré map.
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Figure 5. Distance between two trajectories.
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Figure 6. Discrete Fourier transformation of &(z) .

component. As we can see clearly from these figures, this trajectory is chaotic and the system behaves as chaotic
system (the same was done for the other nine trajectories).

When initial conditions (50) are chosen outside the range (5>< 107" m,5.6x107" m) and with P, =0, or
close to the critical point with &, , the behavior of the trajectories is regular at this intensity of the electric field.
The transition region (just for gE, $107° N)) is not presented in this study. This analysis was done for each
molecule listed on Appendix A, finding the threshold for the system to become chaotic with initial conditions
close to its associated (é‘l,Pfl = 0) critical value. For the above initial conditions and for several higher values
of the electric field, we checked the chaotic behavior of the the trajectories.

Now, choosing the initial conditions close to the critical value (53,13“53 = 0) , the behavior of the diatomic
molecule is regular for intensities of the electric field such that gE, <2.5x10” N . Ten trajectories were chosen
with & in the range [5.6><10’11 m,6.3x107" m} . The phase space has ellipse like figure, the Lyapunov ex-
ponent is non positive, two trajectories, initially infinitesimally separated, remain infinitesimally separated, and
the Fourier transformation presents just peaks. This mean that up to this amplitude of electric field, the tra-
jectories with these initial conditions presents a regular behavior (figures are not shown for these statements, but
Figure 2 before can be taken as a reference of this regular behavior).

For an intensity field such that gE, =2.5x10 N, Figure 7 shows the Lyapunov exponent as a function of
time, Figure 8 shows the distance between two nearby trajectories as a function of time, Figure 9 shows the
stroboscopic map, and Figure 10 shows the discrete Fourier transformation of one of the trajectories.
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Figure 7. Lyapunov’s exponent as a function of time.
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Figure 8. Distance between two trajectories.
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Figure 9. Stroboscopic map.
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Figure 10. Discrete Fourier transformation ofa &£(r).

These figures show that the trajectories are chaotic with this aptitude of electric field. In fact we checked that
the same happen independently of the initial conditions chosen and for higher values of the magnitude of electric
field. The transition region (just for gE, < 10 N) is not presented in this study. The same analysis was done
for each molecule listed on Appendix A to find its threshold electric field for appearing the chaotic behavior.
The table on Appendix B shows the threshold values of the electric field for the appearing of chaotic behavior
of the trajectories around the weak critical point (51,}?5] = O) and the strong critical point (53,}’553 = 0). of

course, if a trajectory is chaotic around the critical point (53,1363 = 0) , it will be chaotic with respect the cri-

tical point (fl,Pé1 = 0) .

6. Conclusion and Comments

We presented the study of the classical chaotic behavior of a diatomic molecule driven by a circularly polarized
resonant electric field. The double resonance system appears from expanding up to fourth order of approxima-
tion the Morse’s potential and angular momentum. Chaotic behavior of trajectories around the weak critical
point appears at much weaker electric field strength than the strength of the electric field needed to appear the
chaotic behavior of trajectories around the strong critical points. This result points out the possible chaotic beha-
vior of double nonlinear resonant systems depending on its initial condition. The exact transition region to chao-
tic behavior will be presented in other articles. The gap (weak-strong) on the thresholds of the electric field strength
to occur the chaotic behavior may be important for the study of diatomic molecules in different environments
and for quantum dynamical studies.
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Appendix A
No. Molecule & (m) & (m) &, (m)
1 BeO 5.37006x 10" 8.01955x10™" 5.98396x 10"
2 BeO 5.97940x 10" 9.66498x 10" 7.20795x10™"
3 BO 3.38723x10°" 7.96387x10°" 5.92803x10™"
4 BO 5.07351x10°" 8.33907x10™" 6.21862x10™"
5 BO 5.03771x10 " 8.55025x10™" 6.37487x10™"
6 AlO 2.72548x10°" 8.28094x10™ 6.15825x10™"
7 AlO 3.02550x 10" 1.13042x10 8.40132x10™"
8 C 4.17055x10°" 7.95605x 10" 5.92803x10™"
9 C 421024x10°" 6.41638x10°™" 478717x10™"
10 CN 3.04688x 10" 7.34672x10°" 5.46810x10™"
1 CN 3.70968x 10" 7.40425x10°" 5.51565x10™"
12 CN 2.96447 %10 5.91302x10°" 4.40486x10"
13 co 2.60849%10 " 7.44774x10°" 5.53974x10™"
14 co 3.29194x10°" 6.95279%10 " 5.17796x10™"
15 co 4.78776x10 " 8.82011x10™" 6.57305x10™"
16 co 3.82087x10°" 6.37185x10°™" 475131x10"
17 co 2.10269%10 3.74037x10 " 2.78813x10™"
18 co 2.99857x10°"* 5.95423x10™" 4.43566x10"
19 co* 1.91268x10°" 5.86225x10™ 435945%10"
20 co’ 3.62635x10°" 7.03604x 10" 5.24215x10™"
21 co’ 3.37838x10°" 5.36516x10°™" 4.00189x10™"
22 F, 2.55317x10°" 7.13548x10°" 5.30795x10™"
23 F, 1.32642x10" 5.19826x10™" 3.95203x10™"
24 H, 2.48222%10°" 9.22679x10™" 6.85729x10™"
25 H, 8.19035x10™ 2.47254x10°™" 1.83853x10™
26 H, 451777x10°" 1.15196x10° 8.5716x10™
27 H, 4.10935%10°" 1.18449x10°2 8.8097x10™"!
28 H, 4.50253x10°" 1.20939x 10" 8.99714x10™"
29 H, 4.63923x10°" 1.24470x10 ™ 9.25983x10™"!
30 H, 4.44141x10™" 2.80152x10™" 2.07964x10™"
31 H, 4.67136x10™" 1.23562x10™" 9.19273x10™"
32 H, 4.74896x10°" 1.29192x10°™* 9.61058x10™"
33 H, 4.69598x10°" 1.33249x10°™ 9.91091x10™"
34 H; 4.68072x10°" 1.25385x10™" 9.32792x10™"
35 L 3.22273x10™ 1.10877x10° 8.45734x10™"
36 L 5.85630x10™" 8.92053x10°™" 7.04781x10™"
37 N 2.12373x10°" 6.66429x107" 4.95547x10™"
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Continued
38 N, 3.75629x107™" 7.03473x107" 5.24215x10™"
39 N, 3.28275x107" 7.06883x107" 5.26390x10™"
40 N, 3.15037x107™" 6.92580x10™" 5.15691x10™
41 N, 2.30929x107" 5.14751x10™" 3.83263x10™"
42 N; 2.73108x10™" 6.50512x10™" 4.84198x10™
43 N; 2.27152x10™" 5.49819x107™" 4.09226x10™"
44 NO 2.56045x10™" 6.68613x10™" 4.97490x10™"
45 NO 2.00502x10™" 7.05225x107" 5.24215x10™"
46 NO 4.72003x107" 9.35676x10™" 6.97033x10™"
47 NO 2.04773x107" 4.88344x107" 3.63496x10™"
48 0O, 2.69633x107" 7.28711x10™" 5.42137x10™"
49 0O, 2.93300x107" 7.13171x107" 5.30795x10™"
50 0O, 5.92254x107™" 6.95495x107" 5.19918x10™"
51 O, 2.16537x10™" 6.04743x10™" 4.49858x10™"
52 O, 4.79756x10™" 6.61142x10™" 4.93619x10™"
53 0, 4.07605x10™" 7.36827x107" 5.49177x10™"
54 O, 3.47383x10™" 5.80642x107" 4.32969x10™"
55 SiN 2.66102x10™" 8.88744x10™" 6.60729x10™"
56 SiN 3.15048x107" 5.40166x107™" 4.02730x10™"
Appendix B

No. Molecule (£,0) N (&,0) N

1 BeO 1.0x107" 2.5x107

2 BeO 1.0x10™" 1.0x10”

3 BO 1.0x10™" 1.3x10”

4 BO 1.0x10™ 5.0x107"°

5 BO 1.0x10™ 3.0x107"°

6 AlO 1.0x10™" 2.0x10™"

7 AlO 1.0x10™" 2.5%107"

8 G 1.0x10™" 3.0x107"°

9 G 1.0x10™" 2.5%107"

10 CN 1.0x10™" 3.0x107"°

11 CN 1.0x107" 3.0x107"°

12 CN 1.0x107" 3.0x107"°

13 CO 1.0x107" 3.5x10™"

14 CO 1.0x107" 3.0x107"°

15 CO 1.0x10™" 2.0x10™"

16 CO 1.0x10™" 1.5x107™"

17 CO 1.0x107" 2.0x10™
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28
29
30
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35
36
37
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39
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49
50
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SiN
SiN

1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
3.0x10™
1.0x10™"
3.0x10™
3.0x10™
1.0x10™"
3.0x10™
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
5.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™"
4.0x10™"
1.0x10™"
5.0x10™"
1.0x10™"
1.0x10™"
6.0x107"
6.0x107"

3.0x107"°
3.0x107"°
2.0x10™"
2.0x10™"
3.0x107"°
1.0x10™"
1.0x10™"
1.0x10™"
1.0x10™
1.0x10™"
1.0x10™"
9.0x10™"
9.0x10™"°
1.0x10™
1.0x10™
8.0x10™"
1.0x10™"
3.0x107"°
2.0x10™"
2.0x10”
1.0x10™"
8.0x107"
1.2x10™"
1.2x10™"
1.5x107
1.6x10”°
7.0x10™"
1.7x10”°
1.1x10°
1.6x10”
1.5x107
1.6x10”°
1.5x107
1.6x10”
1.5x107
1.5x107
1.5x107
1.5x107
1.5x107
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