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Abstract 
This article delves into the analysis of performance and utilization of Support 
Vector Machines (SVMs) for the critical task of forest fire detection using 
image datasets. With the increasing threat of forest fires to ecosystems and 
human settlements, the need for rapid and accurate detection systems is of 
utmost importance. SVMs, renowned for their strong classification capabili-
ties, exhibit proficiency in recognizing patterns associated with fire within 
images. By training on labeled data, SVMs acquire the ability to identify dis-
tinctive attributes associated with fire, such as flames, smoke, or alterations in 
the visual characteristics of the forest area. The document thoroughly ex-
amines the use of SVMs, covering crucial elements like data preprocessing, 
feature extraction, and model training. It rigorously evaluates parameters 
such as accuracy, efficiency, and practical applicability. The knowledge gained 
from this study aids in the development of efficient forest fire detection sys-
tems, enabling prompt responses and improving disaster management. More-
over, the correlation between SVM accuracy and the difficulties presented by 
high-dimensional datasets is carefully investigated, demonstrated through a 
revealing case study. The relationship between accuracy scores and the dif-
ferent resolutions used for resizing the training datasets has also been dis-
cussed in this article. These comprehensive studies result in a definitive over-
view of the difficulties faced and the potential sectors requiring further im-
provement and focus. 
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1. Introduction 

Support Vector Machines (SVMs) represent a powerful class of supervised ma-
chine learning algorithms renowned for their versatility and effectiveness in solv-
ing a wide range of classification and regression tasks. Introduced by Vladimir 
Vapnik and his colleagues in the 1960s, SVMs have since become a cornerstone 
of modern machine learning. 

At their core, SVMs excel in finding optimal decision boundaries that separate 
data points belonging to different classes while maximizing the margin, or dis-
tance, between these boundaries. This unique characteristic allows SVMs to per-
form exceptionally well in scenarios where data may be complex, high-dimensional, 
or not linearly separable. Moreover, SVMs are known for their ability to gene-
ralize from training data to new, unseen examples, which makes them valuable 
tools for both classification and regression problems. We can see a similar 
work in [1] and [2]. A comparative analysis of forest fire detection can be seen 
in [3]. 

High-dimensional datasets refer to datasets where each data point has a large 
number of features or dimensions. A dataset can be represented as a matrix, 
where each row corresponds to a data point, and each column corresponds to a 
feature. High-dimensional datasets have a large number of columns or dimen-
sions, making them challenging to visualize and analyze. Collecting, storing, and 
processing this extensive information may not contribute additional advantages 
to optimal decision-making; instead, it could potentially complicate matters and 
incur excessive costs. In [4], Ghaddar et al. address the problem of feature selec-
tion within SVM classification that deals with finding an accurate binary clas-
sifier that uses a minimal number of features available in the high-dimensional 
datasets. 

SVMs have found applications in diverse fields, including image classification, 
text categorization, biological sciences, finance, and more. Their adaptability, 
robustness, and capacity to handle large datasets make them a preferred choice 
for many researchers and practitioners in the domain of machine learning. 

2. Optimization in Machine Learning 

Machine learning tasks often follow a common structure: we start with a dataset 
containing pairs of input and output, like ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nx y x y x y . The 
goal is to find a function, denoted as fθ , where θ  represents a set of parame-
ters from a predefined set P. We want this function to minimize a loss function, 
which measures the difference between the predicted output ( )f xθ  and the 
actual output y. 

So, in a formal sense, machine learning tasks can be boiled down to two opti-
mization problems: 

1) Optimization in the space of possible functions M, where we seek to mi-
nimize the loss:  

( )( )min ,
f M

l y f x
θ

θ∈
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2) Optimization in the space of parameters P, where we aim to minimize the 
loss by adjusting θ :  

( )( )min ,
P

l y f xθθ∈
 

To prevent overfitting and enhance the model’s ability to generalize to new 
data, we may include regularization terms in the loss function. This leads to a 
modified optimization problem:  

( )( ) ( )( )min ,
P

l y f x Rθθ
λ θ

∈
+  

Here, ( )R θ  represents the regularization term, and λ  is a hyperparameter 
controlling the strength of regularization. The details can be found in [5] and 
[6].  

Kernel Used for Optimization  

The kernel method represents a prominent machine learning technique, specifi-
cally designed to address nonlinear classification and regression problems. In 
numerous practical scenarios, the association between input variables and the 
target variable does not stick to linear patterns. In such instances, conventional 
linear models like linear regression or logistic regression may exhibit suboptimal 
performance. (In [7], Schölkopf et al. provides an introduction to SVMs and re-
lated kernel methods including the latest research in this area.) 

The kernel method provides a remedy by facilitating the transformation of 
input variables into a higher-dimensional feature space. Within this feature space, 
it becomes possible to establish linear relationships between the input variables 
and the target variable. This transformation is facilitated through the utilization 
of a kernel function, which is a mathematical function designed to quantify the 
similarity between pairs of input data points. 

By projecting the input data into this higher-dimensional feature space, the 
kernel method is capable of capturing intricate and nonlinear relationships be-
tween the input variables and the target variable. It also offers the versatility to 
complement various machine learning algorithms, including support vector 
machines (SVMs), ridge regression, and principal component analysis (PCA). 

From a mathematical perspective, the kernel method involves the mapping of 
input data points, represented as vectors denoted as x within a d-dimensional 
input space, into a higher-dimensional feature space denoted as F, achieved 
through the application of a kernel function labeled as K. 

This kernel function operates by taking a pair of input vectors, namely x and 
x’, and subsequently computing the dot product of their corresponding feature 
representations within F. Formally, the kernel function can be articulated as fol-
lows: ( ) ( ) ( ), ,K x x x xφ φ′ ′= , where ( )xφ  and ( )xφ ′  respectively denote 
the feature representations of x and x’ within the feature space F. 

The selection of an appropriate kernel function is a pivotal decision in machine 
learning, contingent on the specific problem at hand and the unique characteris-
tics of the input data. Several common kernel functions serve distinct purposes: 
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• Linear Kernel: This kernel, denoted as ( ) T,K x x x x′ ′= , assumes a linear re-
lationship between data points. It is suitable when the underlying data pat-
terns follow linear trends. 

• Polynomial Kernel: The polynomial kernel, defined as ( ) ( )T,
d

K x x x x c′ ′= + , 
introduces nonlinearity by elevating the dot product of data points to a cer-
tain power (d), while c represents a constant. This kernel is versatile and can 
effectively capture more intricate relationships within the data. 

• Gaussian (RBF) Kernel: The Gaussian or Radial Basis Function (RBF) kernel,  

expressed as ( )
2

2, exp
2

x x
K x x

σ

 ′−
′  = −

 
 

, relies on the Euclidean distance  

between data points. The parameter σ governs the width of the Gaussian 
function, enabling adaptation to data with varying scales. It excels at captur-
ing intricate patterns in the data. 

• Sigmoid Kernel: The sigmoid kernel in machine learning is a similarity meas-
ure used for classification tasks. It is defined as ( ) ( )T, tanhK x x x xα β′ ′= +  
where α  and β  are hyperparameters controlling the kernel’s shape. It cap-
tures non-linear relationships between data points and is particularly useful 
when data has complex, sigmoid-shaped decision boundaries. 

Once the input data has been transformed into the higher-dimensional feature 
space F using a selected kernel function, linear algorithms such as Support Vec-
tor Machines (SVMs) or ridge regression can be applied for classification or re-
gression tasks. Within this transformed feature space, the decision boundary is 
represented as a hyperplane, often corresponding to a nonlinear decision boun-
dary when projected back into the original input space. This approach empowers 
the handling of complex, nonlinear relationships present in the data. 

In practical machine learning applications, the feature representations de-
noted as ( )xφ  within the higher-dimensional feature space F are frequently 
not explicitly calculated. This is made possible by the kernel function, which 
enables the computation of dot products between data points without the need 
to construct and store the feature vectors themselves. This remarkable technique, 
often referred to as the “kernel trick”, bestows upon the kernel method the com-
putational efficiency necessary to operate effectively within high-dimensional 
feature spaces. As a result, it simplifies the procedure of managing intricate data 
alterations while preserving computational feasibility. The details can be found 
in [5].  

3. Data Availability  

One of the dataset employed for this study is conveniently accessible in 
https://data.mendeley.com/datasets/gjmr63rz2r/1Dataset for Forest Fire Detection 
in Mendeley Data. It is provided as a compressed file “Dataset.rar”. This archive 
contains two essential components: the training dataset and the test dataset. These 
datasets consist of images, each having a resolution of 250 × 250 pixels (Figure 1). 
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Figure 1. Images of the upper and the lower row belong to the training and testing data-
sets respectively of “Dataset.rar” with: (a), (b), (c) Elements of the training dataset with 
fire (d), (e), (f) Elements of the training dataset with no fire (g), (h), (i) Elements of the 
test dataset with fire (j), (k), (l) Elements of the test dataset with no fire. 
 

 
Figure 2. Images of the upper and the lower row belong to the training and testing data-
sets of images.cv respectively. 
 

The other dataset we used for checking the efficiency of our model is accessi-
ble from https://images.cv/. In this dataset all images are of 256 × 256 pixels and 
all belong to the category of forest fire. They have been curated to focus specifi-
cally on imagery related to forest fires (Figure 2). 

4. Aim 

The primary focus of this report is to thoroughly analyze the performance of 
Support Vector Machines (SVMs) in the context of forest fire detection, with a 
particular emphasis on challenging datasets characterized by high dimensionali-
ty and limited samples. A unified theory for general class of nonconvex pena-
lized SVMs in the high-dimensional setting can be found in [8]. In our article, 
the overarching objective is to contribute to the development of a model for en-
hancing the efficiency of forest fire detection using image data. 

Specifically, our aim is to examine the performance of SVMs under challeng-
ing conditions, understanding how the model responds to high-dimensional da-
tasets with sparse samples. The goal is to gain insights into the variations in per-
formance and to identify the factors that influence the model’s accuracy in de-
tection. Take a look at [9] for a quick idea in the field of machine learning in 
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Forest Fire Detection. An empirical study on the viability of SVM in the context 
of feature selection from moderately and highly unbalanced datasets can be seen 
in [10]. 

Through this analysis, we strive to acquire a thorough comprehension of the 
model’s reactions under various circumstances. This understanding is crucial in 
pinpointing opportunities for growth and enhancement that positively influence 
the model, ultimately resulting in improved precision in forest fire detection. 

5. Implementation  

Our dataset consists of labeled images categorized as “fire” and “no-fire”. The 
primary objective of this study was to employ predictive methods to determine 
whether unseen test data belonged to either the “fire” or “no-fire” category. Given 
the binary nature of this classification task, several techniques were at our dis-
posal. Ultimately, we opted to train a Support Vector Machine (SVM) model for 
this purpose. This SVM model was carefully trained to classify images and pre-
dict the occurrence of forest fires based on the visual content of the images. This 
choice was made after careful consideration of its suitability for binary classifica-
tion tasks involving image data. While there were options to employ diverse di-
mension reduction methods for handling high-dimensional datasets, our focus 
was to assess the performance of the SVM model under these conditions. Con-
sequently, we refrained from engaging in dimension reduction techniques. How-
ever, dimensionality reduction techniques such as Principal Component Analy-
sis, Linear Discriminant Analysis, Independent Component Analysis, Canonical 
Correlation Analysis, Fisher’s Linear Discriminant, Topic Models and Latent Di-
richlet Allocation, etc. could have been used to increase the efficiency of the 
SVM model.  

5.1. Procedure  

Our dataset presents a challenge in which the number of data samples is notably 
low in comparison to the multitude of attributes considered. Specifically, we 
have utilized the pixel values of images as these attributes. To address this issue, 
we undertook a series of preprocessing steps to enhance the dataset’s suitability 
for analysis. 

First, we performed resizing of the images to various resolutions, including: 
10 × 10, 20 × 20, 30 × 30, 40 × 40, 50 × 50, 60 × 60, 70 × 70, 80 × 80, 90 × 90, 100 × 
100, 150 × 150, 200 × 200, 250 × 250. This resizing was performed exclusively on 
the training datasets to better comprehend the relationship between the quantity 
of samples and the number of attributes. 

Furthermore, in our desire for increasing the number of data samples, we ap-
plied data augmentation techniques like flip and median blur which resulted in 
increase of 4 times the samples we have—original samples, flipped version of 
original samples and median blurred samples of both original and flipped sam-
ples. These augmentations were essential in the development of a more robust 
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dataset for subsequent analysis. 
Subsequently, we explored classification methodologies, utilizing Support 

Vector Machines (SVM) with polynomial, sigmoid, and Gaussian kernels. Addi-
tionally, we employed 4-Folds Cross Validation and the Grid Search algorithm 
on the various resized image datasets to assess their classification performance. 
Furthermore, we conducted a comparative study of the SVM models under these 
challenging conditions by applying Logistic Regression to the same image data-
sets. The samples were taken as input of SVM as vectors of values of red, green 
and blue values of all the pixels of the images. The SVM model is then run on 
various values of parameters for kernels and among them the best model is cho-
sen for observations. 

It is important to note that the resizing and data augmentation procedures 
were exclusively applied to the training datasets. The two test datasets remained 
unaltered and were treated as unseen data during our model evaluation, thereby 
ensuring a robust assessment of model generalization and performance. Our 
model was quite simple as we are only interested in the performance. Some pre-
diction related works can be seen as in [11] and [12].  

5.2. Results & Observations  

In the thorough assessment of our models carried out on both balanced and un-
balanced datasets, it is apparent that specific classifiers display different levels of 
performance, providing valuable understanding into their effectiveness within 
the scope of the given classification task. This examination aims to clarify the 
relative advantages and disadvantages of these classifiers, thereby giving a com-
prehensive comprehension of their performance. 

First and foremost, the Sigmoid Kernel Support Vector Machine (SVM) has 
emerged as the weakest contender within the spectrum of classifiers examined. 
Its performance was observed to be suboptimal, failing to meet the standards set 
by other classifiers. Significantly, when compared to the Logistic Regression mod-
el, the Sigmoid Kernel SVM demonstrated a noticeably poorer performance, the-
reby highlighting its inappropriateness for the specific classification task being 
examined. It is evident that this particular SVM variant struggled to recognize 
and categorize patterns within the data effectively, leading to a comparatively 
higher rate of misclassification. 

In stark contrast, the Polynomial Kernel SVM showcased a more promising 
performance trajectory. In direct comparison to the Logistic Regression model, 
the Polynomial Kernel SVM managed to outperform the latter. This indicates 
that the former possesses a certain degree of resilience and robustness in han-
dling the complications of the dataset. It is worth noting that the Polynomial 
Kernel SVM, with its capacity to model complex, nonlinear relationships, dem-
onstrated an inherent advantage over the logistic regression model, which tends 
to assume linearity in its decision boundaries. 

Further refinement in the classification outcomes was observed with the 
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Gaussian Kernel SVM. This specific variant of the Support Vector Machine dis-
played superior performance when compared to all the classifiers discussed in 
this evaluation. Its enhanced effectiveness in identifying and categorizing in-
stances can be credited to the Gaussian kernel’s capacity to grasp complex pat-
terns and nonlinearity, which might be present in the dataset. The Gaussian 
Kernel SVM, therefore, presents itself as a formidable choice when intricate and 
nonlinear relationships are inherent in the data. 

In short, this detailed analysis has illuminated the varying degrees of success 
among the classifiers employed, providing critical insights into their relative 
performance. The Sigmoid Kernel SVM, owing to its subpar performance, is evi-
dently ill-suited for the classification task at hand. Conversely, the Polynomial 
Kernel SVM has proven to be a more adept choice when compared to logistic 
regression, thanks to its ability to model complex relationships. Finally, the Gaus-
sian Kernel SVM has emerged as the most proficient classifier, particularly when 
dealing with datasets replete with intricate and nonlinear patterns, establishing 
its superiority among the classifiers considered in this assessment. These find-
ings provide valuable guidance for making informed decisions about the choice 
of classifier in future endeavors, ensuring optimal performance in classification 
tasks. We can increase the efficiency of the SVM model by using methods as in 
[13] but our main focus here is to analyze the performance. 

The data presented in Tables 1-8 comprises key performance metrics, including 
Resolution Size, Accuracy Score, and the Confusion Matrix. The Confusion Ma-
trix, a pivotal component of this assessment, is delineated by four fundamental 
parameters: TP (True Positive), FP (False Positive), TN (True Negative), and FN 
(False Negative). Here in the tables provided Confusion Matrix is as [[TP, FP],  
 
Table 1. Logistic regression on balanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.868421 [[165, 25], [25, 165]] 

20 0.852632 [[163, 27], [29, 161]] 

30 0.834211 [[159, 31], [32, 158]] 

40 0.813158 [[153, 37], [34, 156]] 

50 0.834211 [[155, 35], [28, 162]] 

60 0.865789 [[160, 30], [21, 169]] 

70 0.863158 [[164, 26], [26, 164]] 

80 0.868421 [[163, 27], [23, 167]] 

90 0.873684 [[166, 24], [24, 166]] 

100 0.871053 [[164, 26], [23, 167]] 

150 0.873684 [[166, 24], [24, 166]] 

200 0.868421 [[164, 26], [24, 166]] 

250 0.868421 [[163, 27], [23, 167]] 
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Table 2. Logistic regression on unbalanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.947020 [[0, 0], [48, 858]] 

20 0.964680 [[0, 0], [32, 874]] 

30 0.962472 [[0, 0], [34, 872]] 

40 0.965784 [[0, 0], [31, 875]] 

50 0.973510 [[0, 0], [24, 882]] 

60 0.976821 [[0, 0], [21, 885]] 

70 0.972406 [[0, 0], [25, 881]] 

80 0.974614 [[0, 0], [23, 883]] 

90 0.973510 [[0, 0], [24, 882]] 

100 0.976821 [[0, 0], [21, 885]] 

150 0.975717 [[0, 0], [22, 884]] 

200 0.974614 [[0, 0], [23, 883]] 

250 0.975717 [[0, 0], [22, 884]] 

 
Table 3. Sigmoid kernel SVM on balanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.473684 [[81, 109], [91, 99]] 

20 0.689474 [[142, 48], [70, 120]] 

30 0.689474 [[142, 48], [70, 120]] 

40 0.689474 [[142, 48], [70, 120]] 

50 0.689474 [[142, 48], [70, 120]] 

60 0.689474 [[142, 48], [70, 120]] 

70 0.689474 [[141, 49], [69, 121]] 

80 0.689474 [[141, 49], [69, 121]] 

90 0.689474 [[141, 49], [69, 121]] 

100 0.689474 [[141, 49], [69, 121]] 

150 0.689474 [[141, 49], [69, 121]] 

200 0.507895 [[90, 100], [87, 103]] 

250 0.689474 [[141, 49], [69, 121]] 

 
[FN, TN]] Structurally, the confusion matrix is represented as a 2 × 2 matrix 
with the following format: 

TP FP
FN TN
 
 
 

 

In this representation, “TP” signifies the count of True Positives, “FP” indi-
cates the count of False Positives, “TN” denotes the count of True Negatives, and 
“FN” enumerates the count of False Negatives. These values are essential in  
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Table 4. Sigmoid kernel SVM on unbalanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.539735 [[0, 0], [417, 489]] 

20 0.663355 [[0, 0], [305, 601]] 

30 0.663355 [[0, 0], [305, 601]] 

40 0.666667 [[0, 0], [302, 604]] 

50 0.667770 [[0, 0], [301, 605]] 

60 0.668874 [[0, 0], [300, 606]] 

70 0.671082 [[0, 0], [298, 608]] 

80 0.671082 [[0, 0], [298, 608]] 

90 0.671082 [[0, 0], [298, 608]] 

100 0.671082 [[0, 0], [298, 608]] 

150 0.673289 [[0, 0], [296, 610]] 

200 0.556291 [[0, 0], [402, 504]] 

250 0.673289 [[0, 0], [296, 610]] 

 
Table 5. Polynomial kernel SVM for balanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.894737 [[167, 23], [17, 173]] 

20 0.905263 [[170, 20], [16, 174]] 

30 0.897368 [[167, 23], [16, 174]] 

40 0.900000 [[168, 22], [16, 174]] 

50 0.892105 [[166, 24], [17, 173]] 

60 0.889474 [[166, 24], [18, 172]] 

70 0.900000 [[169, 21], [17, 173]] 

80 0.900000 [[169, 21], [17, 173]] 

90 0.900000 [[169, 21], [17, 173]] 

100 0.894737 [[168, 22], [18, 172]] 

150 0.892105 [[167, 23], [18, 172]] 

200 0.892105 [[167, 23], [18, 172]] 

250 0.889474 [[166, 24], [18, 172]] 

 
gauging the accuracy and efficacy of the classification models under considera-
tion, providing valuable insights into their performance in distinguishing be-
tween positive and negative instances within the dataset. The accuracy score for 
a given confusion matrix is defined as: 

TP TNAcuracy Score
TP FP FN TN

+
=

+ + +
 

We shall now proceed to conduct a detailed examination of performance,  
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Table 6. Polynomial kernel SVM for unbalanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.961369 [[0, 0], [35, 871]] 

20 0.967991 [[0, 0], [29, 877]] 

30 0.972406 [[0, 0], [25, 881]] 

40 0.971302 [[0, 0], [26, 880]] 

50 0.971302 [[0, 0], [26, 880]] 

60 0.972406 [[0, 0], [25, 881]] 

70 0.974614 [[0, 0], [23, 883]] 

80 0.974614 [[0, 0], [23, 883]] 

90 0.975717 [[0, 0], [22, 884]] 

100 0.974614 [[0, 0], [23, 883]] 

150 0.976821 [[0, 0], [21, 885]] 

200 0.976821 [[0, 0], [21, 885]] 

250 0.976821 [[0, 0], [21, 885]] 

 
Table 7. Gaussian kernel SVM for balanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.907895 [[173, 17], [18, 172]] 

20 0.902632 [[173, 17], [20, 170]] 

30 0.902632 [[174, 16], [21, 169]] 

40 0.905263 [[175, 15], [21, 169]] 

50 0.910526 [[175, 15], [19, 171]] 

60 0.913158 [[175, 15], [18, 172]] 

70 0.910526 [[174, 16], [18, 172]] 

80 0.907895 [[174, 16], [19, 171]] 

90 0.907895 [[174, 16], [19, 171]] 

100 0.907895 [[174, 16], [19, 171]] 

150 0.910526 [[173, 17], [17, 173]] 

200 0.905263 [[174, 16], [20, 170]] 

250 0.918421 [[175, 15], [16, 174]] 

 
specifically in relation to its connection with the resolution size. This investiga-
tion will enable us to gain a comprehensive understanding of how various per-
formance metrics are influenced by changes in the resolution size. In Figure 3, 
we have presented a series of plots illustrating the interplay between Accuracy 
scores and Resolution Size. 

The data indicates a consistent trend of increasing accuracy as the resolution 
size expands, especially for the Logistic Regression model and SVMs using both  
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Table 8. Gaussian kernel SVM for unbalanced dataset. 

Resolution Size Accuracy Score Confusion Matrix 

10 0.967991 [[0, 0], [29, 877]] 

20 0.960265 [[0, 0], [36, 870]] 

30 0.960265 [[0, 0], [36, 870]] 

40 0.962472 [[0, 0], [34, 872]] 

50 0.967991 [[0, 0], [29, 877]] 

60 0.969095 [[0, 0], [28, 878]] 

70 0.969095 [[0, 0], [28, 878]] 

80 0.970199 [[0, 0], [27, 879]] 

90 0.970199 [[0, 0], [27, 879]] 

100 0.971302 [[0, 0], [26, 880]] 

150 0.977925 [[0, 0], [20, 886]] 

200 0.970199 [[0, 0], [27, 879]] 

250 0.983444 [[0, 0], [15, 891]] 

 

 
Figure 3. Plots Representing Accuracy Score (vertical axis) and Resolution Size (horizontal axis) for (a) Logistic Regres-
sion, (b) SVM with Sigmoid Kernel, (c) SVM with Polynomial Kernel, (d) SVM with Gaussian Kernel. 
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Polynomial and Gaussian Kernels. Importantly, this gradual increase in accuracy 
aligns with larger resolution settings, implying that more detailed data represen-
tation leads to improved model performance. 

However, an interesting deviation is observed when looking at the SVM with 
the Sigmoid Kernel. At a resolution size of 200, there is a notable and somewhat 
perplexing drop in accuracy. This dip in accuracy is, however, rectified when the 
resolution is set to 250. Such fluctuations in accuracy can be attributed to several 
factors, often dependent on the specifics of the training and test datasets used. It 
is crucial to note that the dataset in question, being relatively small, is prone to 
these changes. While this occurrence is not rare, it poses a considerable chal-
lenge in the quest to develop robust classification models. Therefore, the impor-
tance of addressing and reducing such accuracy fluctuations, especially at critical 
resolution settings, is emphasized, as it is crucial for the creation of dependable 
classification models. 

Another significant observation relates to how our models perform when used 
on unbalanced datasets. In this case, it is clear that the accuracy scores generally 
maintain a higher average compared to those in the balanced dataset. However, 
this pattern does not apply to the SVM with the Sigmoid Kernel, which sees a 
drop in accuracy. 

The reason for this occurrence is rooted in the inherent differences between 
balanced and unbalanced datasets, such as changes in statistical measures like 
variance, skewness, and other pertinent factors. These differences can signifi-
cantly affect the performance results of classification models. The ability of the 
models to handle the inherent imbalances in the context of the unbalanced da-
taset is crucial in determining their accuracy scores. 

We also conducted an analysis of the True Positive Rate (TPR) and False Posi-
tive Rate (FPR) values for both balanced and unbalanced datasets. These values 
can be obtained from Tables 9-12 using the relations 

FP TPFPR and TPR .
FP TN TP FN

= =
+ +

 

Notably, in the case of the unbalanced dataset, we observed that the False Pos-
itive Rate (FPR) consistently equated to zero. Consequently, we opted to exclude 
the unbalanced dataset from further consideration. Subsequently, we generated a 
Receiver Operating Characteristic (ROC) curve using the acquired TPR and FPR 
values for the balanced dataset. The ROC curve provides a visual representation 
of a model’s discriminatory performance across various threshold levels. This 
comprehensive examination of TPR and FPR, coupled with the ROC curve, 
forms a robust evaluation of the model’s classification performance under dif-
fering dataset conditions. An example of such an evaluation can be found in 
[14]. 

True Positive Rate (TPR): Also known as sensitivity or recall, TPR is the 
proportion of actual positive instances correctly identified by a classification 
model. It is calculated as the ratio of true positives to the sum of true positives  
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Table 9. Logistic regression on balanced dataset. 

Resolution Size TPR FPR F1-Score 

10 0.868421 0.131579 0.868421 

20 0.848958 0.143617 0.853403 

30 0.832461 0.164021 0.834646 

40 0.818182 0.191710 0.811671 

50 0.846995 0.177665 0.831099 

60 0.883978 0.150754 0.862534 

70 0.863158 0.136842 0.863158 

80 0.876344 0.139175 0.867021 

90 0.873684 0.126316 0.873684 

100 0.877005 0.134715 0.870027 

150 0.873684 0.126316 0.873684 

200 0.872340 0.135417 0.867725 

250 0.876344 0.139175 0.867021 

 
Table 10. Sigmoid kernel SVM on balanced dataset. 

Resolution Size TPR FPR F1-Score 

10 0.470930 0.524038 0.447514 

20 0.669811 0.285714 0.706468 

30 0.669811 0.285714 0.706468 

40 0.669811 0.285714 0.706468 

50 0.669811 0.285714 0.706468 

60 0.669811 0.285714 0.706468 

70 0.671429 0.288235 0.705000 

80 0.671429 0.288235 0.705000 

90 0.671429 0.288235 0.705000 

100 0.671429 0.288235 0.705000 

150 0.671429 0.288235 0.705000 

200 0.508475 0.492611 0.490463 

250 0.671429 0.288235 0.705000 

 
and false negatives. 

False Positive Rate (FPR): FPR measures the proportion of actual negative 
instances incorrectly classified as positive by a model. It is computed as the ratio 
of false positives to the sum of false positives and true negatives. 

Receiver Operating Characteristic (ROC): ROC is a graphical representa-
tion of a model’s performance across various discrimination thresholds. It plots 
the True Positive Rate against the False Positive Rate, providing insights into the  
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Table 11. Polynomial kernel SVM for balanced dataset. 

Resolution Size TPR FPR F1-Score 

10 0.907609 0.117347 0.893048 

20 0.913978 0.103093 0.904255 

30 0.912568 0.116751 0.895442 

40 0.913043 0.112245 0.898396 

50 0.907104 0.121827 0.890080 

60 0.902174 0.122449 0.887701 

70 0.908602 0.108247 0.898936 

80 0.908602 0.108247 0.898936 

90 0.908602 0.108247 0.898936 

100 0.903226 0.113402 0.893617 

150 0.902703 0.117949 0.890667 

200 0.902703 0.117949 0.890667 

250 0.902174 0.122449 0.887701 

 
Table 12. Gaussian kernel SVM for balanced dataset. 

Resolution Size TPR FPR F1-Score 

10 0.905759 0.089947 0.908136 

20 0.896373 0.090909 0.903394 

30 0.892308 0.086486 0.903896 

40 0.892857 0.081522 0.906736 

50 0.902062 0.080645 0.911458 

60 0.906736 0.080214 0.913838 

70 0.906250 0.085106 0.910995 

80 0.901554 0.085561 0.908616 

90 0.901554 0.085561 0.908616 

100 0.901554 0.085561 0.908616 

150 0.910526 0.089474 0.910526 

200 0.896907 0.086022 0.906250 

250 0.916230 0.079365 0.918635 

 
trade-off between sensitivity and specificity. 

Area Under the ROC Curve (AUC): AUC quantifies the overall perfor-
mance of a classification model by calculating the area under the ROC curve. It 
ranges from 0 to 1, with higher values indicating better discriminatory ability. 
AUC is a common metric for evaluating the effectiveness of binary classification 
models. 

The results for TPR and FPR values are in Tables 9-12. 
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We can see the plot of ROC curve for the balanced dataset in Figure 4. We 
can observe that the curves consistently exhibit a high True Positive Rate (TPR) 
even as the False Positive Rate (FPR) remains minimal. This performance cha-
racteristic indicates the model’s robust ability to effectively discriminate between 
positive and negative instances. The Area Under the ROC Curve (AUC) further 
supports these findings, with a value close to 1, affirming the model’s superior 
discriminatory power. The details of ROC curves and their significance can be 
seen in [15]. These results collectively highlight the effectiveness of the classifica-
tion model in striking a robust balance between sensitivity and specificity, thus 
validating its appropriateness for forest fire detection. 

In summary, our findings highlight the critical importance of considering da-
taset balance and related statistical attributes when developing and evaluating 
classification models. The close connection between model performance and 
dataset attributes emphasizes the necessity for a detailed and customized strategy  

 

 
Figure 4. Plots representing ROC curve on balanced dataset for (a) Logistic Regression, (b) SVM with Sigmoid Kernel, (c) SVM 
with Polynomial Kernel, (d) SVM with Gaussian Kernel. 
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in tackling the complexities of real-world classification.  

6. Places for Further Improvements  

In the process of developing our Support Vector Machine (SVM) model, several 
notable challenges have come to the forefront. These challenges can be summa-
rized as follows: 

1) Resolution Size Impact on Accuracy: One notable challenge involves the 
effect of resolution size on accuracy. Even with a considerable information loss 
due to varying resolution sizes, the corresponding accuracy percentage stayed 
relatively constant. This dilemma brings up questions about the best resolution 
size for our model, and how it influences information preservation and classifi-
cation effectiveness. 

2) Anomaly in Sigmoid Kernel SVM: A distinctive anomaly was observed in 
the performance of the SVM with the Sigmoid kernel. Notably, a sudden drop in 
accuracy occurred at a resolution size of 200, followed by a subsequent recovery 
at a resolution of 250. This anomaly highlights the complexities and unpredicta-
bilities in model behavior, thereby giving scope to a deeper understanding of 
factors influencing such fluctuations. 

3) Data Set Quantity and Sufficiency: A challenge faced in our analysis re-
lates to the adequacy of the dataset. It remained inconclusive as to how many in-
stances within the dataset are sufficient for training and assessing the model ef-
fectively. Determining the optimal dataset size remains a critical concern, as it 
directly impacts model generalization and performance. 

4) Data Augmentation and Pattern Enhancement: Another unresolved issue 
surrounds data augmentation, specifically in its capacity to either introduce en-
tirely new patterns or merely enhance existing ones. The distinction between 
these outcomes is of much importance for evaluating the effectiveness of data 
augmentation strategies. 

5) Pixel Attribute Relationships: Our model is predicated on the attributes of 
RGB pixel values. Regrettably, we encountered difficulties in drawing meaning-
ful inferences regarding the relationships between color values themselves. This 
shows that it is challenging to understand how color attributes interact in the 
classification task. 

In summary, these challenges emphasize the complex nature of developing 
SVM models and analyzing data. Thus, further investigation and deeper under-
standing of factors such as resolution size, dataset sufficiency, and the impact of 
model parameters like the Sigmoid kernel, is required. Addressing these chal-
lenges will help in improving the model’s performance and enhancing our un-
derstanding of the relationships within the data.  

7. Significance and Future Works 

Conducting analysis of this nature provides valuable insights into the efficacy of 
our Support Vector Machine (SVM) model when directly applied to diverse da-
tasets treated as high-dimensional without dimensionality reduction. While our 
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study focused on the forest fire dataset, similar analysis can be extended to other 
datasets as well. The results of these evaluations may be used for the creation of 
algorithms specifically designed for high-dimensional data, taking into account 
resolution size. This strategy guarantees precision for particular applications 
while preserving computational speed. 

Following the performance analysis of SVM in forest fire detection, future 
endeavors should focus on refining model efficiency under challenging condi-
tions, particularly with datasets characterized by high dimensionality and limited 
samples. Further exploration could involve optimizing feature extraction me-
thods, investigating advanced SVM kernel functions, and incorporating ensem-
ble techniques for enhanced predictive accuracy. Additionally, attention should 
be given to exploring the scalability of the model to larger datasets and evaluat-
ing its robustness in diverse environmental contexts.  
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