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Abstract 
Propensity score (PS) adjustment can control confounding effects and reduce 
bias when estimating treatment effects in non-randomized trials or observa-
tional studies. PS methods are becoming increasingly used to estimate causal 
effects, including when the sample size is small compared to the number of 
confounders. With numerous confounders, quasi-complete separation can 
easily occur in logistic regression used for estimating the PS, but this has not 
been addressed. We focused on a Bayesian PS method to address the limita-
tions of quasi-complete separation faced by small trials. Bayesian methods are 
useful because they estimate the PS and causal effects simultaneously while 
considering the uncertainty of the PS by modelling it as a latent variable. In 
this study, we conducted simulations to evaluate the performance of Bayesian 
simultaneous PS estimation by considering the specification of prior distribu-
tions for model comparison. We propose a method to improve predictive 
performance with discrete outcomes in small trials. We found that the speci-
fication of prior distributions assigned to logistic regression coefficients was 
more important in the second step than in the first step, even when there was 
a quasi-complete separation in the first step. Assigning Cauchy (0, 2.5) to 
coefficients improved the predictive performance for estimating causal effects 
and improving the balancing properties of the confounder.  
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1. Introduction 

Adjustment by propensity score (PS) is a valuable method for comparing treat-
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ment effects in non-randomized trials or observational studies. Rosenbaum and 
Rubin proposed a PS adjustment method to provide an unbiased estimate of the 
average treatment effect [1]. PS is the treatment assignment probability, calcu-
lated from the measured confounding variables using logistic regression. Sub-
jects with the same PS can be considered comparable or exchangeable. Thus, 
adjustment with PS provides an unbiased comparison between groups. 

The conventional frequentist PS adjustment method involves two sequential 
steps: estimating PS and estimating causal effects. In the first step, PS is the 
point-estimated probability of treatment assignment. In the second step, causal 
effects are estimated using the PS calculated in the first step. However, this con-
ventional two-step sequential method does not consider the impact of uncer-
tainty in the PS on the performance of causal effect estimation [2] [3] [4]. Con-
ventional sequential estimations that use regression adjustment with the PS un-
der the correct specification of the causal model in the second step result in a 
smaller RMSE than other methods, such as stratification, IPTW, and doubly ro-
bust estimation [4]. For comparison with the Bayesian simultaneous method, we 
use the maximum likelihood estimation of the regression model as our conven-
tional two-step method. 

The Bayesian method, in which the first and second steps are estimated si-
multaneously, has been proposed [5] [6]. There has been also a two-step Baye-
sian estimation method in which the impact of uncertainty in the PS on the per-
formance of causal effect estimation is evaluated [7]. However, the most useful 
feature of Bayesian estimation is a simultaneous estimation. The simultaneous 
Bayesian method accounts for the uncertainty in PS estimation by treating the 
PS as a latent variable during the estimation of causal effects. When using the 
maximum likelihood estimation of the regression model, if there are insufficient 
participants for the number of confounders, quasi-complete separation can easi-
ly occur in logistic regression used for estimating the PS. Although the Bayesian 
simultaneous PS method presents a potential solution for the issue of qua-
si-complete separation faced by small trials, research is lacking in this area. We 
focus on the Bayesian method to address these issues and compare the perfor-
mance of Bayesian simultaneous estimation with that of conventional maximum 
likelihood estimation. In Bayesian estimation, the priors are important. The util-
ity of priors for providing interpretable shrinkage and conducting causal sensi-
tivity analyses has been discussed [8]. Some prior distributions for Bayesian lo-
gistic regression have been proposed as useful methods for dealing with separa-
tion in discrete outcomes [9] [10]. Simulations were conducted to evaluate the 
performance of the Bayesian simultaneous estimation assigned to each prior dis-
tribution. Furthermore, in Bayesian simultaneous estimation, the first step is af-
fected by the second step through the simultaneous model fitting of PS and 
causal effects. The balancing properties of PS are important for unbiased com-
parisons between the treated and untreated groups. Therefore, we also evaluate 
covariate balancing properties between treatment and control groups [11] [12] 
[13] [14]. 
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In Section 2, we describe the conventional frequentist approach and Bayesian 
simultaneous estimation and outline the methods and prior distributions applied 
to the data. In Section 3, we present a simulation comparing Bayesian simulta-
neous and conventional frequentist methods. Data are generated from optional 
distributions and models in Part 1, and conditions similar to reports of post-
operative statin trials comparing the development of acute kidney injury (AKI) 
between treatment groups in Part 2 [15]. In Section 4, the results of these simu-
lations are reported. In Section 5, we summarize our findings and discuss how 
the predictive performance of the Bayesian simultaneous method can be im-
proved in small trials. 

2. Methodology 
2.1. Propensity Score Adjustment 

PS is defined as the probability of treatment assignment given measured cova-
riates if the treatment assignment is strongly ignorable and there are no unmea-
sured confounders. In other words, the PS is estimated under the condition that 
the treatment assignment cannot be a result of confounding and all confounders 
have been observed. When estimating PS, a multidimensional vector of meas-
ured confounders can be reduced to a one-dimensional vector by using logistic 
regression. Comparing treated and untreated subjects with the same PS provided 
an unbiased estimate of the treatment effect. This is similar to the random as-
signment of the treatment status in clinical trials. 

The PS adjustment for a binary outcome is described below with treatment 
variable X, outcome variable Y, a vector of p covariates plus intercept C (1, 
C1, …, Cp), and regression coefficients vector γ:  

( )logit Pr 1| γ= =  X C C                      (1) 

and  

( ) ( )logit Pr 1| , , .gα β γ= =  Y X C X C+               (2) 

First, the PS is estimated using a logistic regression model that regresses the 
treatment assignment on observed confounders, as described in Equation (1). 
Subsequently, the treatment effect is regressed on the treatment assignment and 
PS, as described in Equation (2). 

Equation (1) defines the association between X given C, and Equation (2) de-
fines the association between Y and X given C. g(C, γ) in Equation (2) is the PS. 
In the simultaneous Bayesian method, posterior estimates of the parameters 
calculated from Bayesian logistic regression were obtained using the models 
given in Equations (1) and (2). The PS is modeled as a latent variable and the 
marginal posterior for the treatment effect is integrated over this variable. In this 
study, we sample from posterior distributions using the Metropolis-Hastings 
MCMC algorithm. Updating γ from its conditional posterior distribution cor-
responds to the simultaneous updating of PS, α, and β in the outcome model. 
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2.2. Separation and Prior Information 
2.2.1. Quasi-Complete Separation 
Quasi-complete separation occurs when one or more covariates almost perfectly 
predict the outcome variable in models for binary outcomes. 

Consider logistic regression for PS estimation with the dependent variable Xi 
and a vector of covariates Ci with coefficient vector γ:  

( ) ( )
1Pr 1| , .

1 expi i
i

X C
C

γ
γ

= =
+ −

 

The log-likelihood for this model is: 

( ) ( ) ( ) ( )1

1 1ln | ln 1 ln 1 .
1 exp 1 exp

N

i i
i i i

L X X
C C

γ
γ γ=

     = + − −    
+ − + −        

∑X  

In quasi-complete separation, the maximum likelihood estimate γ is large. 
Separation is related to little or no overlap in covariate distributions between the 
treatment groups.  

2.2.2. Firth Bias Reduction  
A penalized likelihood-based Firth logistic regression method may provide an 
effective solution to separation [16]. Firth’s approach adds a bias term to the 
log-likelihood function as follows: 

( ) ( ) ( )* 1ln | ln | ln .
2

L L Iγ γ γ= +X X  

This penalized likelihood eliminates bias even in the presence of complete se-
paration.  

2.2.3. Cauchy Distribution 
In Bayesian linear regression, the prior distributions of the regression coeffi-
cients are important. Non-informative priors are often applied when there is no 
prior information. In extreme conditions such as separation, Lasso regression is 
equivalent to using the Laplace prior in Bayesian interpretation [17]. The Lap-
lace distribution is centered around zero and has long tails. When applying such 
distributions to the regression coefficients, the posterior estimates shrink to-
wards zero. Cauchy priors have features similar to those of the Laplace prior, 
whereas the normal prior is more diffuse around zero. 

Gelman recommends the Cauchy distribution with a center of 0 and a scale of 
2.5 as a default prior for regression coefficients in logistic regression because it 
allows inferences to be drawn even in the presence of separation [9]. Previous 
research has found that logistic regression coefficients are typically between −5 
and 5. In logistic regression, a change of 5 corresponds to moving a probability 
from 0.01 to 0.5, or from 0.5 to 0.99 [9]. Here, we used a Cauchy distribution 
with a center of 0 and a scale of 2.5 (Cauchy (0, 2.5)).  

2.2.4. Inclusion of Data Information 
There are several approaches to the inclusion of data information in prior dis-
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tributions for Bayesian analysis. Sullivan and Greenland calculated prior infor-
mation, such as the median or variance from confidential intervals [18] [19]. In 
this study, we use a normal prior distribution that has information arising from 
true models; the mean is the true parameter value and the variance is 6.25, be-
cause the coefficients of logistic regression are almost always between −5 and 5, 
as described above. 

3. Application 

Simulations were conducted to evaluate the performance of the Bayesian simul-
taneous method. The simulation study comprised two parts. In “Part 1”, we 
generated data from arbitrary distributions to confirm the basic performance of 
each model and prior distribution. In “Part 2”, we generated data using a similar 
condition to that reported in the postoperative statin trial [15]. Each model and 
prior distribution were applied to the generated data. Simulations were per-
formed using SAS, version 9.4 (SAS Institute, Cary, NC, USA). 

3.1. Data Generation 

In Part 1, we generated replicated datasets containing N = 160 observations for 
small trials, which led to quasi-complete separation, and N = 1000 observations 
for large trials, which is sufficient to eliminate quasi-complete separation. All the 
simulated datasets contain eight covariates Ci (C1, …, C8), four of which are con-
tinuous variables, and the remaining are discrete. Continuous variables were 
generated from a normal distribution with a mean of 0 and variance of 1, and 
discrete variables were assumed to follow a Bernoulli distribution with p = 0.3. 
Xi and Yi are generated from Bernoulli distributions, and the relationship be-
tween them is described below. 

( ) ( )
( )
0 1 1 8 8

0 1 1 8 8

exp
Pr 1| ,

1 exp
i i

i i
i i

C C
X C

C C
γ γ γ

γ
γ γ γ
+ + +

= =
+ + + +





            (3) 

and  

( ) ( )
( )

0 1 1 1 8 8

0 1 1 1 8 8

exp
Pr 1| , .

1 exp
i i i

i i i
i i i

X C C
Y X C

X C C
α α β β
α α β β
+ + + +

= =
+ + + + +





       (4) 

We used logistic regression in both steps and regarded Equations (3) and (4) 
as the true models used to generate data under the given simulation design. Ta-
ble 1 summarizes the characteristics of each simulation and the true values of 
the model coefficients. The simulation scenario and regression coefficients in 
Part 1 follow in Table 1. We assigned each value to the coefficient γn in Equation 
(3). Each scenario had different coefficient values (α0, α1, βn) in Equation (4). We 
set γ8 = −4.4 as the coefficient of confounder 8 to cause quasi-complete separa-
tion within 0 < g(C, γ) < 1 and 0 < Pr(Yi = 1|Xi, Ci) < 1. The allocation rate was 
set to 1:1. Under this condition, quasi-complete separation occurred in 16% of 
replicated datasets. This is not severe and can occur in clinical trials with small 
sample sizes. Using the conditions for small trials, we generated 8000 datasets  
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Table 1. Catalog of simulation designs including regression coefficient, outcome event rate per treatment group, number of sub-
jects, and separation rate in replicated datasets. Each row corresponds to the true values of the regression coefficient used to gen-
erate the given simulation design. X = 1 and X = 0 are set for each treatment group. 

Scenario 
Regression Coefficient of Equation (3) 

Regression 
Coefficient of 
Equation (4) 

Outcome 
Event rate 

(%) 

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 α0 α1 βn X = 1 X = 0 

1 

(0.0, 0.5, 0.5, −0.5, −0.5, 0.65, 0.65, 0.65, −4.4) 

0 −1 −0.3 23 41 

2 0 0 −0.3 43 41 

3 0 0 0.3 57 59 

4 0 1 0.3 77 59 

 
and sampled 1000 datasets that led to quasi-complete separation (small (100%)) 
and another 1000 that did not (small (0%)). Using the conditions for large trials, 
we generated 1000 datasets (large). 

In Part 2, data were generated using conditions similar to those reported in a 
postoperative statin trial comparing AKI development between patients who 
used postoperative statins and those who did not [15]. In this trial, the sample 
size was insufficient, given the number of confounding variables, and quasi- 
complete separation occurred in 13% of the replicated datasets. From 10,000 
generated datasets, we sampled 1000 datasets with quasi-complete separation 
(100%) and another 1000 without (0%). The replicated datasets contained 324 
observations and 19 covariates (244 patients taking postoperative statins and 80 
patients not taking postoperative statins). The outcome event rate was 21%. The 
association between outcome events and treatment variables, given confounders, 
and the distribution of confounders for patients taking postoperative statins and 
those who developed AKI are described in the original report. From 10,000 gen-
erated datasets, we sampled 1000 datasets that led to quasi-complete separation 
(100%) and another 1000 that did not (0%). 

3.2. Prior Distributions and Models Applied to Replicated  
Datasets 

In the Bayesian simultaneous approach, we assigned a normal distribution with 
a mean of 0 and variance of 10,000, a normal distribution with mean γn using 
information from the true parameter values of regression coefficients and va-
riance of 6.25, and a Cauchy distribution with a center of 0 and a scale of 2.5. 
Table 2 lists the models applied to the data. We sampled from the posterior 
density using the Metropolis-Hastings algorithm and used posterior mean esti-
mates obtained from MCMC chains of length 10,000 with the first 2000 dis-
carded as burn-in. For comparison, we used the maximum likelihood estimation 
of the regression model (ML) and Firth penalized likelihood approach (Firth) as 
the sequential method. 
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Table 2. Catalog of simulation designs including the number of subjects, propensity score distributions between each group, se-
paration rate of 1000 replicated datasets, regression coefficients, and the association between treatment and confounders (ML is a 
maximum likelihood estimation model). 

Name of Model  ML Firth Normal Cauchy 1 Cauchy 2 TrueCoef 

Propensity score 
estimation 
(1st step) 

Method 

(Logistic regression) (Bayesian Logistic regression) 

maximum 
likelihood 

Firth’s 
penalized 
likelihood 

Bayes MCMC 

Prior - 
Normal 

(0, 10,000) 
Cauchy 
(0, 2.5) 

Cauchy 
(0, 2.5) 

Normal 
(γn, 6.25) 

Causal effect 
estimation 
(2nd step) 

Method 
(Logistic regression) (Bayesian Logistic regression) 

maximum likelihood Bayes MCMC 

Prior - 
Normal 

(0, 10,000) 
Normal 

(0, 10,000) 
Cauchy 
(0, 2.5) 

Normal 
(γn, 6.25) 

3.3. Analysis 

We evaluated the numerical performance of estimating the causal effects of 1000 
replicated datasets through bias, MSE, and 95% coverage. Causal effects were 
obtained from estimators of the regression coefficient α1, which is the log odds 
ratio of the treatment effect. We referred to 95% confidence intervals or Baye-
sian credible intervals for calculating coverage. 

We checked the balancing properties of the PS by using standardized differ-
ences to investigate whether the resulting covariate balance was optimized [11]. 
We conducted PS adjustment using regression with each confounder and PS as 
independent variables. We assessed the degree of imbalance in the distributions 
of each confounder between the treatment groups after PS adjustment using 
score d. 

For continuous variables, balancing score d is defined as: 

( )1 0

2 2
1 0

100 % .

2

X X

X X

C C
d

SD SD
= =

= =

−
= ×

+
                 (5) 

where 1XC =  and 0XC =  denote the sample mean of the confounder in each 
treatment group and 2

1XSD =  and 2
0XSD =  denote the sample variance of the 

confounder in each treatment group. For discrete variables, the score d is de-
fined as: 

( ) ( )
( )1 0

1 1 0 0

ˆ ˆ
100 % .

ˆ ˆ ˆ ˆ1 1
2

X X

X X X X

p p
d

p p p p
= =

= = = =

−
= ×

− + −
          (6) 

where 1ˆ Xp =  and 0ˆ Xp =  denote the prevalence of the discrete variables in each 
treatment group. 
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4. Results 
4.1. Impact of Quasi-Complete Separation and Model Comparison 

Figure 1 shows the distributions of the causal effects. With a large sample size 
(N = 1000), the causal effect estimation variability is smaller than that with a 
small sample size (N = 160). The numerically summarized estimates of α1 are 
presented in Table 3. Throughout the analysis, estimates of α1 under Scenarios 1 
and 4 present a large bias and MSE compared with those under Scenarios 2 and 
3. Point estimates of α1 using conventional frequentist estimation had the lowest 
MSE, but the coverage was slightly higher than 0.95. When using the Bayesian 
method with small sample sizes, Cauchy 2 shows superior performance relative 
to the other models, even though TrueCoef uses information from true coeffi-
cients. However, shrinking towards zero seems to lead to bias. With a large sam-
ple size, the distributions of α1 estimates were less variable, regardless of the 
model and method of estimation used. In contrast, with small sample sizes, es-
timates of α1 show large distributions and MSE regardless of the presence of qu-
asi-complete separation. Bias depends on each scenario. 
 

 

Figure 1. Distributions of estimate of causal effect (α1) calculated from traditional sequential (ML, 
Firth) and Bayesian simultaneous method (Normal, Cauchy 2) under Scenario 2 and 3. Small-sized da-
tasets contain 160 observations and Large-sized datasets contain 1000. Small (100%) shows all of repli-
cated datasets lead to separation and Small (0%) shows none of them lead to separation. Horizontal 
dotted lines are the true parameter values. 
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Table 3. Numerical performance comparison of estimates of causal effect (α1) to assess 
the impact of prior distribution assigned in the first step. Causal effect (α1) is estimated 
from conventional sequential (maximum likelihood of regression, ML and Firth) and 
Bayesian simultaneous methods (Normal, Cauchy 1) with different specifications of prior 
distributions in the first step and the same specifications in the second step. Small data-
sets contain 160 observations and large datasets contain 1000 observations. “Small (100%)” 
shows that all of replicated datasets lead to quasi-complete separation and “Small (0%)” 
shows that none do. 

Performance 
metrics 

Separation Scenario N 
Name of Model 

ML Firth Normal Cauchy 1 

Bias 

Small 
(100%) 

1 160 0.027 0.025 −0.015 −0.026 

2 160 0.021 0.019 0.010 0.001 

3 160 0.003 0.005 0.015 0.023 

4 160 −0.052 −0.051 −0.016 −0.008 

Small 
(0%) 

1 160 0.057 0.057 0.014 0.005 

2 160 −0.008 −0.008 −0.019 −0.027 

3 160 0.010 0.011 0.028 0.034 

4 160 −0.026 −0.026 0.017 0.026 

Large 

1 1000 0.067 0.067 0.005 0.007 

2 1000 0.002 0.001 0.011 0.012 

3 1000 0.004 0.004 −0.015 −0.016 

4 1000 0.050 0.050 −0.011 −0.012 

MSE 

Small 
(100%) 

1 160 0.263 0.262 0.334 0.335 

2 160 0.210 0.209 0.275 0.277 

3 160 0.206 0.206 0.269 0.273 

4 160 0.242 0.239 0.294 0.295 

Small 
(0%) 

1 160 0.244 0.244 0.308 0.311 

2 160 0.196 0.196 0.258 0.262 

3 160 0.191 0.191 0.256 0.259 

4 160 0.233 0.231 0.290 0.289 

Large 

1 1000 0.038 0.038 0.049 0.050 

2 1000 0.027 0.027 0.037 0.037 

3 1000 0.026 0.026 0.035 0.035 

4 1000 0.033 0.033 0.050 0.049 

95% 
Coverage 

Small 
(100%) 

1 160 0.95 0.95 0.94 0.94 

2 160 0.96 0.96 0.94 0.94 

3 160 0.95 0.95 0.94 0.94 

4 160 0.97 0.97 0.95 0.95 
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Continued 

 

Small 
(0%) 

1 160 0.94 0.94 0.93 0.93 

2 160 0.95 0.95 0.94 0.93 

3 160 0.96 0.96 0.94 0.94 

4 160 0.96 0.96 0.94 0.95 

Large 

1 1000 0.93 0.93 0.94 0.93 

2 1000 0.96 0.96 0.92 0.93 

3 1000 0.97 0.96 0.94 0.94 

4 1000 0.96 0.96 0.93 0.93 

 
Table 3 compares the impact of quasi-complete separation in the first step on 

each model. The performance of α1 estimation is similar to that of the conven-
tional PS estimation (ML) and Firth penalized method (Firth) despite qua-
si-complete separation in the first step. In the Bayesian simultaneous method, 
regardless of the scale parameter or shape of the prior distributions in the first 
step, there is little impact on the posterior estimates of α1. The performance of 
models with the same specification of prior distributions in the second step 
(Cauchy 1, Normal) was similar, even if they had different specifications in the 
first step. Table 4 illustrates the performance of the models assigned different 
specifications for prior distributions in the second step (Cauchy 1, Cauchy 2, 
TrueCoef). A reduction in the scale parameter of the prior distributions in the 
second step led to an overall reduction in MSE and an improvement in 95% 
coverage. Estimates of α1 are only slightly influenced by the specification of prior 
distributions in the first step but have a large impact from the second step. 

4.2. Assessment of Covariate Balance of Models 

Figure 2 shows the boxplot of the score d of confounder 8, which leads to quasi- 
complete separation, to assess the balancing properties of PS adjustment. Re-
gardless of the prediction model used, PS adjustment significantly reduced the 
score d. However, the score d from the Bayesian simultaneous methods was 
larger than that from the conventional frequentist method. Additionally, the 
score d calculated from the Bayesian simultaneous methods varied by scenario, 
whereas those from the frequentist methods were constant. 

The score d from Cauchy 1 when assigning Cauchy (0, 2.5) in the first step 
was superior to when using Normal (0, 10,000). Additionally, comparisons be-
tween Cauchy 1 and Cauchy 2 appear to show that the reduction in the scale pa-
rameter of prior distributions assigned in the second step is associated with an 
improvement in balancing properties. 

4.3. Model Comparison in Postoperative Statin Use Trial 

The results of the simulation using the conditions reported in the postoperative 
statin trial are described in Table 5. The true value of the odd ratio of causal  
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Table 4. Numerical performance comparison of estimates of causal effect (α1) to assess 
the impact of prior distribution assigned in the second step. Causal effect (α1) is estimated 
from conventional sequential (maximum likelihood, ML) and Bayesian simultaneous 
methods (Cauchy 1, Cauchy 2, TrueCoef) with different specifications of prior distribu-
tions in the second step and nearly identical specifications in the first step. Small datasets 
contain 160 observations and large datasets contain 1000 observations. “Small (100%)” 
shows that all of replicated datasets lead to quasi-complete separation and “Small (0%)” 
shows that none do. 

Performance 
metrics 

Separation Scenario N 
Name of Model 

ML Cauchy 1 Cauchy 2 TrueCoef 

Bias 

Small 
(100%) 

1 160 0.027 −0.026 0.051 −0.011 

2 160 0.021 0.001 0.008 −0.028 

3 160 0.003 0.023 0.014 −0.041 

4 160 −0.052 −0.008 −0.081 −0.120 

Small 
(0%) 

1 160 0.057 0.005 0.078 0.014 

2 160 −0.008 −0.027 −0.016 −0.056 

3 160 0.010 0.034 0.020 −0.026 

4 160 −0.026 0.026 −0.050 −0.085 

Large 

1 1000 0.067 0.007 0.004 0.003 

2 1000 0.002 0.012 0.010 0.008 

3 1000 0.004 −0.016 −0.013 −0.012 

4 1000 0.050 −0.012 −0.009 −0.008 

MSE 

Small 
(100%) 

1 160 0.263 0.335 0.257 0.273 

2 160 0.210 0.277 0.212 0.229 

3 160 0.206 0.273 0.208 0.228 

4 160 0.242 0.295 0.235 0.254 

Small 
(0%) 

1 160 0.244 0.311 0.244 0.252 

2 160 0.196 0.262 0.202 0.217 

3 160 0.191 0.259 0.196 0.210 

4 160 0.233 0.289 0.228 0.240 

Large 

1 1000 0.038 0.050 0.046 0.048 

2 1000 0.027 0.037 0.036 0.036 

3 1000 0.026 0.035 0.034 0.034 

4 1000 0.033 0.049 0.046 0.048 

95% 
Coverage 

Small 
(100%) 

1 160 0.95 0.94 0.95 0.95 

2 160 0.96 0.94 0.96 0.95 

3 160 0.95 0.94 0.95 0.95 

4 160 0.97 0.95 0.96 0.95 

https://doi.org/10.4236/ojs.2023.131001


A. Takagi, T. Yamaguchi 
 

 

DOI: 10.4236/ojs.2023.131001 12 Open Journal of Statistics 
 

Continued 

 

Small 
(0%) 

1 160 0.94 0.93 0.94 0.94 

2 160 0.95 0.93 0.95 0.94 

3 160 0.96 0.94 0.95 0.94 

4 160 0.96 0.95 0.95 0.95 

Large 

1 1000 0.93 0.93 0.94 0.94 

2 1000 0.96 0.93 0.93 0.93 

3 1000 0.97 0.94 0.94 0.94 

4 1000 0.96 0.93 0.94 0.93 

 

 

Figure 2. Distributions of balancing score d of confounder 8 which is cause of separation. Each re-
gression coefficient was adjusted PS from traditional sequential (ML, Firth) and Bayesian simulta-
neous method (Normal, Cauchy 2, TrueCoef) and calculated balancing properties. Small-sized da-
tasets contain 160 observations and Large-sized datasets contain 1000. Small (100%) shows all of 
replicated datasets lead to quasi-complete separation and Small (0%) shows none do. 

 
Table 5. The consequence of estimates of causal effect (α1) from conventional sequential (maximum likelihood, ML) and Bayesian 
simultaneous (Normal, Cauchy 2) methods in a postoperative statin trial setting. Replicated datasets contain 324 observations; 
“All (100%)” shows all of replicated datasets lead to quasi-complete separation and “None (0%)” shows none of them lead to qua-
si-complete separation. 

Separation 
Bias MSE 95% Coverage 

ML Normal Cauchy 2 ML Normal Cauchy 2 ML Normal Cauchy 2 

All (100%) 0.024 −0.097 0.016 0.231 0.309 0.243 0.96 0.94 0.94 

Non (0%) 0.062 −0.052 0.061 0.221 0.280 0.230 0.96 0.95 0.95 
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effects (0.3) was obtained from the trial report. Quasi-complete separation oc-
curred in 12% of the replicated data. Assigning Cauchy 2 yielded a similar per-
formance to that of conventional ML. 

5. Discussion and Conclusions 

In this study, we conducted a simulation assuming a small trial with quasi-complete 
separation caused by one specified confounder and compared the performance 
of each model. 

With a small sample size, despite the presence of quasi-complete separation 
and using Firth’s bias-eliminated estimation in the first step, the performance of 
the causal effect estimation is only slightly affected. Dimensionality reduction 
and sequential estimation in frequentist PS methods circumvent the adverse 
impact of a high-dimensional vector of confounders. Additionally, regression 
adjustment by PS exhibits superior performance if the outcome model is true 
[4]. In the Bayesian simultaneous method, the shrinkage estimation of regres-
sion coefficients in the first step has little impact on the performance of the 
causal effect estimation because calculations are fitted to the model of the second 
step [5] [6]. Hence, prior distributions applied to the coefficients in the second 
step are important, and the variability of α1 is influenced by the specification of 
prior distributions in this step. In contrast, with large sample sizes, the impact of 
giving prior specifications is small. An insufficient sample size with respect to 
the number of confounders produced large variability in the PS estimates and 
led to a remarkable increase in the MSE of α1. Therefore, an adequate sample size 
should be used. 

Using Cauchy 2 drastically reduces the variance of causal effect estimates 
compared with other models, but the value of bias depends on the scenario. An 
adequate scale of prior distributions and shrinkage estimation in the second step 
seems to reduce the variability, and assigning Cauchy (0, 2.5) may be valuable 
regarding variance and coverage. However, further research that considers the 
trade-off between bias and variability is required. Using Cauchy 2 is superior to 
using TrueCoef because the normal distribution tends to be more diffuse around 
the mean [10] [17]. The conventional frequentist method (ML) exhibits a small 
bias and low MSE, but the coverage of α1 is observed slightly higher than 0.95, 
without considering residuals. 

The balancing property of confounder 8, which led to quasi-complete separa-
tion, significantly improved in all models. When using the Bayesian method, 
Cauchy 2 is superior because the shrinkage estimation of the coefficients caused 
by Cauchy (0, 2.5) improves the balancing properties. Score d calculated from 
posterior estimates varies depending on the scenario because simultaneous fit-
ting for the model in the first and second steps provides flexibility in the estima-
tion of γn. However, the first step is affected by the second step because it must 
be adjusted for outcome model fitting such that the posterior distribution of γn 
involves additional information from the second step. It has been argued that 
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variables included as measured confounders should not depend on the outcome 
model [12]. 

In small trials, the variability of causal effect estimation is large, without con-
sidering quasi-complete separation; therefore, it is necessary to select adequate 
prediction models and sample sizes related to the number of confounders. The 
Bayesian simultaneous PS method, assigning Cauchy (0, 2.5) to coefficients as 
the prior distribution, is superior in terms of predictive performance for esti-
mating causal effects and improving the balancing properties of the confounder, 
when leading to quasi-complete separation. 
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