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Abstract 
The dynamics of satellites formation is of great interest for the space mission. 
This work discusses a more efficient model of the relative motion dynamics 
of satellites formation. The model is based on employing the concepts re-
stricted three-body problem (R3BP) and for more accuracy, it considers the 
effects of both oblateness and radiation pressure on deputy relative motion 
w.r.t the chief satellite. A model of deputy relative motion w.r.t the chief sa-
tellite is derived in the local-vertical local-horizontal system and simplified 
assuming the concept of the circular restricted three-body problem (CR3BP). 
The deputy equations of motion were rewritten in the form of recurrence re-
lations and solved numerically using the Lie series approach. Assuming that 
the formation is revolving around the Moon in the Earth-Moon system, the 
effects of both oblateness and radiation pressure on the deputy satellite orbit 
were assessed through a particular example of satellites formation. A com-
parison between the perturbed and unperturbed R3BP shows a significant 
difference in the deputy relative position that has to be considered for the 
formation dynamics. 
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1. Introduction 

Parallel to the start of the space programs, the study of spacecraft relative dy-
namics became one of the most important aspects in designing and analyzing 
space missions. Several authors were interested in this study to analyze rendezvous 
and docking of two spacecrafts in addition to maintenance of spacecraft forma-
tion. The most famous models of relative motion, Clohessy-Wiltshire and Tschaun-
er-Hempel, have been used to analyze relative guidance, navigation and control 
systems. However, these two models assumed that the spacecraft relative dis-
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tance is significantly small compared with its position w.r.t the centre of mass of 
the primary. Moreover, they assume pure Kepler motion (e.g. two-body problem 
without including any perturbations) [1] [2]. Afterwards, different models have 
been constructed to overcome the limitations of these two models [3]-[8].  

In 2019, Giovanni Franzini and Mario Innocenti studied the relative motion 
dynamics using the classical restricted three-body problem (unperturbed prob-
lem). They found that a three-body scenario is more suitable than a two-body 
scenario to describe the dynamics of satellite relative motion and more efficient 
for studying the relative guidance and navigation system [9]. Recently, many au-
thors are interested in modelling the formation dynamics employing the restricted 
three-body problem and studied the relative motion around the libration points 
[10] [11] [12] [13] [14]. 

The current study aims to get a more accurate formulation of the relative mo-
tion employing the perturbed restricted three-body problem. The dynamical 
model assumes that the primaries are radiating and oblate spheroids considering 
only zonal harmonics. Based on constructing recurrence formulas and applying 
the Lie series approach, the model is solved numerically. Finally, the numerical 
application is performed assuming a circular three-dimensional problem.  

2. Formulation of the Problem 
2.1. The Perturbed Restricted Three-Body Problem 
The restricted three-body problem is one of the most famous dynamical model-
lings of celestial systems. Extensive studies were performed using a variety of 
methods assuming that the primaries are spheres and only their gravitational at-
traction is considered [15]-[20]. For a more accurate model, additional perturb-
ing forces such as oblateness and radiation pressure are considered. The gravita-
tional potential “ kφ ” of a massive body is given by [21] [22] [23]: 

( )21 sin
n

k kk k
k n nn

k k

Gm R
j P

r r
φ δ∞

=

  
 = − −  
   

∑              (1) 

G is the universal gravitational constant, kR  is the mean radius of each body, 
δ  is the latitude of the infinitesimal body, kr  is the separation between every 
two bodies and k

nj  is the dimensionless coefficient which represents the 
non-spherical components of the potential. The Legendre polynomials “ ( )sink

nP δ ” 
of degree n is given by:  

( ) ( )21 dsin sin 1
2 ! d

n nk
n n nP

n
δ δ

δ
= −  

The gravitational force “ grF ” exerted by the body is: 

gr kF φ= −∇                           (2) 

where ∇  denotes the vector differential operator. Apart from the gravitational 
potential, if the body is radiating, then it exerts a radiation force “ radF ” in the 
opposite direction of its gravitational force. Consequently, the total force “ kF ” 
is: 
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k gr rad k grF F F q F= − =                       (3) 

where ( )1k rad grq F F= −  is the radiation factor ( )0,1∈ . Substitute (1) and (2) 
into (3):  
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∑               (4) 

where 
( ) ( ) ( ) ( ) ( )1 sink k kn
n n k nA n j R P δ= +  

Consider a system of three bodies that have masses 1m , 2m  and 3m  such 
that the masses of primaries 1 2m m>  and 3m  is the mass of the chief satellite 
in a formation. Let ( )ˆˆ ˆ: , ,I i j k  is a sidereal (inertial) coordinate system with the 
origin lies in the centre of mass of the two primaries, the motion of each body is 
given by: 
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∑ ∑  

where ik k ir r r= − , 1,2,3i =  and 1,2,3k =  and i k≠ . For the restricted case 
of three bodies, the primaries are not affected by the gravitational influence of 
the satellite. Assuming that the formation is revolving around the smaller pri-
mary, the equation of motion of the chief satellite is (see Figure 1): 
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Figure 1. Restricted three-body problem in an inertial frame. 
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As clear in Figure 1, 23 cr r=  is the relative position of the chief w.r.t. the 
smaller primary and 13 12 cr r r= + , then 
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Equation (5) can be normalized by assuming that the gravitational constant 
1G = , the distance between the two primaries is unity and the sum of their 

masses is unity. Let the normalized mass of the small primary parameter be 

2

1 2

m
m m

µ =
+

, then that of the big primary is “1 µ− ”. Consequently, the chief 

equation of motion will be: 
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Similarly, the motion of a deputy satellite of the formation will be: 
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Let ( )2 2 2
ˆˆ ˆ: , ,i j k  is a synodic coordinate system with an origin that lies in 

the centre of mass of the smaller primary which is defined as follows: 
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where 2 12 12h r r= ×   is the angular momentum of the smaller primary w.r.t. the 
big primary. Let this frame rotates with angular velocity 2 2 2k̂ω ω=  w.r.t the 
inertial frame ( ): , ,I X Y Z . Then, the equation of motion of the chief w.r.t. 
smaller primary is: 
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Similarly, the motion of the deputy satellite will be: 
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where  
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2.2. The Relative Motion in Perturbed Restricted Three Body  
Problem 

To describe the relative motion of the deputy w.r.t. the chief, let ( )3 3 3̂
ˆ ˆ: , ,i j k  

is a Local Vertical Local Horizontal frame “LVLH” with an origin that lies in the 
chief centre of mass and is defined as (As is clear in Figure 2):  
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where c c ch r r = ×  



 is the chief angular momentum w.r.t. the second primary. 

The position of the deputy w.r.t. the smaller primary is given by (see Figure 2):  

d cr r ρ= +                         (11) 

Let ( )3 3 3̂
ˆ ˆ: , ,i j k  rotates with angular velocity 3ω  w.r.t. the inertial frame 
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Introducing (6) and (7) into (12), then  
 

 
Figure 2. Local vertical local horizontal frame w.r.t. synodic frame. 
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The angular velocity of “ ” w.r.t “I” is given by: 
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where /ω   and 2ω  are angular velocities of   w.r.t.   and   w.r.t. I 
respectively. To determine /ω   and /ω  , a simple scheme based on the time 
derivatives of LVLH w.r.t. the synodic frame “  ” [9] [24]: 

3 / 3
ˆ ˆi iω  = ×  


 


, 3 / 3
ˆ ˆj jω  = ×  


 


, 3 / 3
ˆ ˆk kω  = ×  


 


        (15) 

Multiply (15) by the relative unit vector as follows:  
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By summing up the previous equations we get 
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Considering (10), the time derivative of the unit vectors of the LVLH frame 
is: 
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Substitute from (17), into (16), then: 
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where cr  



 and the jerk cr  




 can be obtained by Equation (8) and its dif-

ferentiation. Equation (13) along with (14) and (18) represent the equation of 
relative motion of the deputy w.r.t. the chief in the frame of the perturbed re-
stricted three-body problem. It noted that the equation of relative motion is a 
nonlinear 2nd order differential equation with time-varying parameters which 
can be simplified assuming the circular case of the restricted three-body prob-
lem.  

3. The Relative Motion in the Circular Restricted  
Three-Body Problem  

Assuming that the two primaries revolve in a circular orbit around their com-
mon centre of mass, then the following simplifications will be considered [10]: 

12 2̂r i= − , [ ]12 0r =

 , 2 2k̂ω = , 2 0ω = , 2 0ω =  

Consequently, the angular velocity and acceleration of the LVLH frame w.r.t. 
the inertial frame is simplified as follows: 

3 / 2k̂ω ω= +   

3 / / 2k̂ω ω ω   = − ×   
 

    
 

For more simplifications, assume that both primaries are radiating and only 
the second zonal harmonic is considered. Then  

( ) ( ) ( ) ( )2
2 2 23 sink k k

kA j R P δ=  

Let  

c cr r=   

2
ˆ

c crr k= −   

2 2 2
ˆˆ ˆxi yj zkρ = + +   

( )2 2 2
ˆˆ ˆ

d c cxi yj z r kr r ρ= + = + + −   

( )( )
1

23 1 2 2 2
1 d c cG r x z rr yρ

−− −= = + = + + −  
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( ) ( )( )
1

21 2 2 2
2 12 1c cG r r x y z rρ

−−= + + = − + + −  

( )
1

1 2 2
3 12 1c cG r r r

−−= + = +  

Under these assumptions, the equation of relative motion (13) will be reduced 
to:  

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( )

1 23 5 3 5
1 2 2 2 2 1 2 1

213 5
1 3 2 3 3 3 3 3 3

2

3 3 3 3 3 2

1 23 5 3 5
1 2 2 2 2 1 2 1 3 3

2

3 3 3

1 1

1

ˆ2 2

1

x y x z y

z y z y z

x y

y z x

q G A G x q G A G x

q G A G y z x

x z y z y i

q G A G y q G A G y x

z y

ρ µ µ

µ ω ω ω ω ω

ω ω ω ω ω

µ µ ω ω

ω ω ω ω

      = − − − − − −     

 − − − − − + 
+ − + − + 

    + − − − − − −   

− + +

 





( )2

3 3 3 3 3 2
ˆ2 2z x z x zy z x z x jω ω ω ω + − + −  

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 23 5 3 5
1 2 2 2 2 1 2 1

4
1 23 5

1 3 2 3 2 2 3 32

2 2

3 3 3 3 3 3 3 3 2

1

1 11

ˆ2 2

c c

x z
c

cc

y z x y x y x y

q G A G z r q G A G z r

q G A G r q A x
rr

y z z y x y x k

µ µ

µ µ ω ω

ω ω ω ω ω ω ω ω

    + − − − − − − −   
     − − − + − −      

− + + − + − + 
  

    (19) 

where 3 3 3, ,x y zω ω ω  and 3 3 3, ,x y zω ω ω    are the components of the angular velocity 

3ω  and 3ω . 

4. Solution Algorithm  

Power series approaches are widely used to solve different celestial mechanics 
problems. Many authors depend on that algorithm to find an approximate solu-
tion for their problems [25] [26]. The Lie-integration method is one of the most 
famous power series algorithms that can be applied to find both displacement 
and velocity components of the deputy satellite. The method is outlined in the 
following three steps [16] [17] [26]: 

Step I: Construction of the Lie operator 
Let 

1 1 2

3 3 4

5 5 6

x g x g g
y g y g g
z g z g g

= = =
= = =
= = =











 
Then  

1 2g g=  

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

3 5 31 1

5 3 5 3 5

1 23 5 3 5
2 1 2 2 2 1 2 1 2 1 1

213 5
1 3 2 3 3 3 3 3 3 5 3 1

2

3 1 6 3 4 3 5 3 3 3

1 1

1

2 2

g g gg g

g g g g g

g q G A G g q G A G g

q G A G g g g

g g g g g

µ µ

µ ω ω ω ω ω

ω ω ω ω ω

   = − − − − − −   

 − − − − − + 

+ − + − +



 

 

3 4g g=  

( ) ( ) ( )

( ) ( )

31

3 5 5 5 51 1 1

1 23 5 3 5
4 1 2 2 2 3 2 1 2 1 3 3 3 1

22

3 3 5 3 3 3 3 6 3 2 3 5 3 1 3

1

2 2

gg

g g g g gg g g

g q G A G g q G A G g g

g g g g g g g

µ µ ω ω

ω ω ω ω ω ω ω ω

   = − − − − − −   

− + + + − + − 


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5 6g g=  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

51

3 5 3 3 31 1 1

1 23 5 3 5
6 1 2 2 2 5 2 1 2 1 5

4
1 23 5

1 3 2 3 2 2 3 3 12

22

3 3 3 3 5 3 5 4 3 2 3 3 3 1 3

1

1 11

2 2

c c

gg
c

cc

g g g g gg g g

g q G A G g r q G A G g r

q G A G r q A g
rr

g g g g g g g

µ µ

µ µ ω ω

ω ω ω ω ω ω ω ω

   = − − − − − − −   
     − − − + − −      

− + + − + − +



 

 

In general, the components of the equation of relative motion can be rewritten 
in a matrix form as:  

= +g P W  

where g , P  and W  are 6 × 1 matrices defined as follows:  

( )T
1 2 3 4 5 6g g g g g g=g        

and  

( )T
1 2 3 4 5 6W W W W W W=W  

With 1 3 5 0W W W= = = . Based on (18), 1
3 0gω = , then  

( ) ( ) ( )3 5 3 5 3 5
2 23

2 1 3 3 1 3 1 6 3 4 3 5 3 3 31 2 2g g g g g gW q G g g g g g gµ ω ω ω ω ω ω= − − + + − + − +   

( )3 5 5 5 51
2

4 3 3 5 3 3 2 3 5 3 1 32g g g g ggW g g g g gω ω ω ω ω ω= − + − + −   

( ) ( )

( )

3 5 3 3 31
2 3

6 3 3 3 3 5 2 3 3 3 1 3 1 3

4
2

2 22

2 1

1 1

g g g g gg

cc

W g g g g g q G

q A
rr

ω ω ω ω ω ω µ

µ

= − + + − + − −

  
 + −  
   

 

 

However, P  is defined as: 

=P UV  

where is 6 × 6 matrix given by 

( )

( ) ( )

2

1 1

4

3 3

6

5 5

0 0 0 0 0
0 1 0 0 1
0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0c c c

g
g g

g
g g

g
g r g r r

 
 − 
 

=  
 
 
  − − 

U  

( ) ( ) ( ) ( ) ( )( )T
1 2 13 5 3 5 3 5

1 2 2 2 2 1 2 1 1 3 2 31 1 1 1 1q G A G q G A G q G A Gµ µ µ     = − − − − − − − −     V  

The Lie-Operator is defined as [16]: 

1
6 dd

d d
i

i
i

g
D

t g t t=

∂ ∂
= = +

∂ ∂∑  

For explicit time variables, then  

1
6

ii
i

D g
g=

∂
=

∂∑   
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For 1j = , assuming that ij iP P= , ij iW W=  and ij ig g=   then  
( )i i ig P W= +  and 

( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1 2 2 3 3

6

1 2 3

4 4 5 5 6 6
4 5 6

i ii
i

D P W
g

P W P W P W
g g g

P W P W P W
g g g

=

∂
= +

∂

∂ ∂ ∂
= + + + + +

∂ ∂ ∂

∂ ∂ ∂
+ + + + + +

∂ ∂ ∂

∑

        (20) 

Step II: Construction of the recurrence relations for each variable 
Applying the Lie operator Equation (20) on ig , we obtain that 

( )1n n
i i iD g D P W−= +  

1) The recurrence formulas for iDP  

1
6

i ij jijP U V
=

= ∑   

1
6

i ij ji ji ijjDP U DV V DU
=
  = +∑  

Generally,  

1
6

0
n n m mn

i ji ijm jD P D V D U−
= =

  =    ∑ ∑              (21) 

a) The recurrence formulas for jiDV  

( ) ( )13 5
21 1 2 2 21V q G A Gµ  = − − −   

21 1DV T=  

( ) ( ) ( ) ( )

( ) ( ) ( )( )

15 7
1 1 2 2 2 1 1 3 3 5 5

15 7
1 2 2 2 1 2 3 4 5 6

1 3 5 1

1 3 5

c

c

T q G A G g Dg g Dg g r Dg

q G A G g g g g g r g

µ

µ

 
 
 

 = − − − + + − 

= − − + + − 

 

( )23 5
41 2 1 2 1V q G A Gµ  = − −   

41 2DV T=  

( ) ( )( )
( ) ( )( )

25 7
2 2 1 2 1 1 1 3 3 5 5

25 7
2 1 2 1 1 2 3 4 5 6

3 5

3 5

c

c

T q G A G g Dg g Dg g r Dg

q G A G g g g g g r g

µ

µ

 
 = − + + −

= − + + − 
 

 

The higher powers of 21DV  and 41DV  are computed as  
1

21 1
n nD V D T−=  and 1

41 2
n nD V D T−=                  (22) 

The recurrence relation of the rest of the elements of V  is zero.  
b) The recurrence formulas for ijDU  
By definition of ig , its noted that 1

1
n n

i iD g D g−
+=   

11 2U g=  then 11 2
n nD U D g=  

22 1 1U g= −  and 24 1U g=  then 1
22 24 1 2

n n n nD U D U D g D g−= = =  

33 4U g=  then 33 4
n nD U D g=  

42 44 3U U g= =   
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then  
1

42 3 4
n n nD U D g D g−= =                     (23) 

55 6U g=   

Then 

55 6
n nD U D g=                         (24) 

62 64 5 cU U g r= = −  

Then  
1

62 64 5 6
n n n nD U D U D g D g−= = =                (25) 

The recurrence relation of the rest of the elements of U  is zero.  
2) The recurrence formulas for ijDW  

1 2 3 0n n nD W D W D W= = =                     (26) 

2 2DW β=  

( ) ( )

( ) ( )

3 5 3 5 3 5

3 5 3 5 3 5

2 2

2 3 3 1 3 6 3 4 3 5 3 3

2 2

3 3 2 3 6 3 4 3 6 3 4

2 2

2 2

g g g g g g

g g g g g g

Dg Dg Dg Dg Dg

g Dg Dg g g

β ω ω ω ω ω ω

ω ω ω ω ω ω

 = + − + − +  
 = + − + − +  

 

 

 

4 4DW β=  

( )
( )

3 5 5 5 5

3 5 5 5 5

2

4 3 3 5 3 3 3 2 3 1

2

3 3 6 3 4 3 2 3 2

2

2

g g g g g

g g g g g

Dg Dg Dg Dg

g g Dg g

β ω ω ω ω ω

ω ω ω ω ω

= − + − −

= − + − −





 

6 6DW β=  

( )3 5 3 3 3
2

6 3 3 3 3 5 3 2 3 12g g g g gDg Dg Dg Dgβ ω ω ω ω ω= − + + +   

The higher powers of 2 4,DW DW  and 6DW  are computed as  
1

2 2
n nD W D β−= , 1

4 4
n nD W D β−=  and 1

6 6
n nD W D β−=       (27) 

The recurrence relation of the rest of the elements of W  is zero.  
Step III: Find the Lie-series solution 
The solution is given by: 

( ) ( ){ }1 2 3 4 5 6 0, , , , , exp
!oo X

k
o X X

k

kg g g g g g t t D D
k

X XX τ∞

==
  = − =    ∑  

Then 

[ ] ( )

[ ] [ ] [ ]

0

1
1

1

1
1

6

2

2 0

!

!

!

!

i o

o i o

i o i o i o i o

i o

k
k

i ik g g

k
k

i i ikg g g

k
k

i i i ikg g g g g g g g

k
k m m

ji ij
n

k j m g g

g D g
k

g D P W
k

g P W D W
k

D G D U
k

τ

τ

ττ τ

τ

∞

= =

∞ −
= =

∞ −
== = = =

∞ − −
= = = =

=

= + +

 = + + +  

 



  

+  

 

  

∑

∑

∑ ∑

∑

∑

    (28) 
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5. Numerical Application  

Consider a circular restricted three-body problem in the Earth-Moon system 
where the period of the Moon about the Earth is 27.23 days. The parameters of 
the primaries, the properties of the chief orbit and the initial condition of the 
deputy in the LVLH frame are tabulated in Table 1 and Table 2.  

The calculations have been made using 10−2 step size and five terms calcula-
tions over 24 hours. To assess the motion of the deputy employing the concepts 
of the restricted three-body problem, the solution algorithm is applied for both 
the unperturbed (classical) and the perturbed cases. A set of curves represent the 
relative motion of the deputy satellite w.r.t. the chief in both cases.  

As is clear in Figures 3-5, in all panes of motion there is a significant differ-
ence in the components of the deputy position between the classical and per-
turbed cases. Consequently, the magnitude of its relative position vector is 
changed as is clear in Figure 6 where the solid curve represents the perturbed 
motion and the dotted curve represents the unperturbed motion and their dif-
ference is represented in Figure 7. 

 
Table 1. The parameters of the primaries. 

The primary Parameters Values 

Earth 

( )1
2j  1.083 × 10−3 

1R  6.357 × 103 km 

1q  0.8 

Moon 

µ  0.0121534 

( )2
2j  202.7 × 10−6 

2R  1.738 × 103 km 

2q  0.45 

 
Table 2. Initial Conditions of the chief and deputy satellites. 

Satellite Parameters Values 

Chief 

Semi-major axis (km) 8600 

Eccentricity 0.00011476 

Mean motion (rad) 0.00266 

Mean anomaly (degree) 275.8850 

Deputy 

Relative position 
( ) ( ), , kmo o ox y z  ( )0.710,210.135, 2.2151−  

Relative velocity 
( ) ( ), , km ho o ox y z    ( )2.264, 3.521,5.527−  

Latitude “δ” 30˚ 
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Figure 3. Motion of the deputy satellite w.r.t. the chief in x-y plane for both the unperturbed and per-
turbed cases of the three-body problem. 
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Figure 4. Motion of the deputy satellite w.r.t. the chief in x-z plane for both the unperturbed and 
perturbed cases of the three-body problem. 

 

 
Figure 5. Motion of the deputy satellite w.r.t. the chief in z-y plane for both the unperturbed and 
perturbed cases of the three-body problem. 
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Figure 6. Comparison between the deputy relative motion for the unperturbed and perturbed cases 
of the three-body problem. 

 

 
Figure 7. Relative distance difference between the unperturbed and perturbed cases. 

6. Conclusion 

The motion of the deputy satellite w.r.t. the chief of the formation is modelled in 
frame of the perturbed restricted three-body problem using the LVLH frame. 
The model is a more accurate formulation compared with the previous work 
where it considers the effects of radiation of both primaries in addition to their 
oblateness second zonal harmonic. The system is simplified assuming the circu-
lar problem and solved numerically using the Lie series approach. The solution 
is tested using suitable initial conditions and applied for both the classical and 
perturbed restricted three-body problems. By comparing the two cases, the re-
sults show that there is a significant difference in the deputy relative distance. 
Consequently, the model will be suitable for a more accurate study of the differ-
ent space mission issues (e.g. satellite rendezvous and control). 
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