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Abstract 
In this paper, we propose new finite volume element schemes to numerically 
solve the improved Boussinesq equation with Stokes damping. The new 
schemes can inherit characteristic properties of the conservation of mass and 
the decrease of total energy from the improved Boussinesq equation with 
Stokes damping. Numerical experiments illustrate that the proposed schemes 
are second-order accuracy in space and time. 
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1. Introduction 

The Boussinesq equation was first presented in the 1870s by Joseph Boussinesq 
to model the propagation of shallow water waves in multiple directions. It is a 
fourth-order nonlinear partial differential equation and belongs to KdV family, 
which has been widely used in math-physical field related to nonlinear wave 
phenomena, such as ion-sound in plasma, nonlinear lattice waves [1]. The Bous-
sinesq equation is also used to study the disturbance and repair of solitary waves 
in blood vessels with aneurysm [2] [3]. A general form of the Boussinesq equa-
tion is  

 ( )2 ,tt xx xxxx xx
u u qu u= + +                       (1) 

where ( ),u u x t=  is a sufficiently differentiable function, which for 1q = −  
gives the good Boussinesq or well-posed equation, while for 1q =  the bad or 
ill-posed Boussinesq equation. 

In this study, we will take 1q = . If the term xxxxu  in Equation (1) is replaced 
with xxttu , it gives the so-called improved Boussinesq equation  
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 ( )2 .tt xx xxtt xx
u u u u= + +                       (2) 

Researchers do not observe any instability for the above improved Boussinesq 
equation [4]. The improved Boussinesq equation (IBq) has been investigated 
theoretically and numerically by many people. 

Yang [5] studied the existence, both locally and globally in time, the unique-
ness of solutions and non-existence of global solutions to the initial boundary 
value problem of a generalized IBq equation. Iskandar and Jain [6] studied the 
dynamical behavior of IBq equation numerically. El-Zoheiry [7] designed a 
three-level iterative scheme based on the compact implicit method for solving 
the improved Boussinesq equation. Bratsos [8] proposed a second order implicit 
finite difference scheme by rational approximations and constructed a predic-
tor-corrector scheme [9] to avoid the solution of a nonlinear system. Lin et al. 
[10] used the finite element method with linear B-spline basis functions to dis-
cretize the improved Boussinesq equation in space and derived a second-order 
system. Shokri and Dehghan [11] used collocation and approximated the solu-
tion by radial basis functions based on the third-order time discretization to 
solve the equation. Irk and Dăg [12] obtained numerical simulations of the im-
proved Boussinesq equation by using two finite difference schemes and two fi-
nite element methods, based on the second- and third-order time discretization. 
Zhang and Lu [13] derived quadratic finite volume element schemes to solve the 
improved Boussinesq equation. 

So far the main attention was paid to the improved Boussinesq equation in the 
absence of damping. However, the damping will change the amplitude of the 
waves and their shape. Yan et al. [14] studied the high-order modified Boussi-
nesq equation with damping term. In [15], Arevalo et al. investigated the dy-
namics of a lattice soliton in the presence of damping. By using a multiple-scale 
perturbation expansion up to second-order, they derived a general expression 
for the first-order velocity correction. Chen et al. [16] studied the Cauchy prob-
lem for the generalized IBq equation with hydrodynamical damping. 

The improved Boussinesq equation of interest is here  

 ( ) [ ]2 , ,tt xx xxtt txx
u u u u u x a bγ= + + − ∈                  (3) 

where γ  is the positive constant. According to [15], the damping in the equa-
tion corresponds to the Stokes damping. For the improved Boussinesq equation 
with Stokes damping, we adopt the following periodic boundary conditions  

 ( ), 0,1; 0,1 .
l j l j

l j l j
x a x b

u u l j
x t x t= =

∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
              (4) 

As the analytic solutions for the Equation (3) are not available, it is necessary 
to design efficient numerical schemes to perform numerical simulation. To in-
vestigate the influence of damping on the solution, the proposed schemes should 
inherit characteristic properties of the system. The finite volume element me-
thod has been one of the most commonly used numerical methods for solving 
partial differential equations [17]. One main attractive property of the method is 
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that, the mass conservation law is maintained, which is fairly desirable for fluid 
and underground fluid computations. So it has been extensively used in compu-
tational fluid dynamics [18]-[23]. 

In this study, we will propose new finite volume element schemes for the im-
proved Boussinesq equation with Stokes damping. The schemes can preserve 
mass conservation and energy dissipation of the improved Boussinesq equation. 
Furthermore, we will study numerically the rate of decay of solutions of the con-
sidered equation using our numerical schemes. 

The paper is organized as follows: Our numerical method is described in Sec-
tion 2, which will give good results for deterministic cases. In Section 3, we 
present some numerical examples to illustrate the accuracy and conservation 
property of the proposed numerical schemes. In Section 4, the numerical results 
for the improved Boussinesq equation with damping are given. The conclusions 
are summarized in the last section. 

2. Numerical Method 

In this section, new finite volume element schemes will be derived to solve the 
considered Equation (3). 

2.1. Energy Dissipation Property 

In order to see the energy dissipation property, it is more convenient to work 
with the following system representation  

 
,

,

t x

t xxt

u v
Gv v v

x u
δ γ
δ

=


∂  − = −  ∂  

                     (5) 

where G
u

δ
δ

 is the Euler-Lagrange variational derivative [24] [25] defined by  

2 3

, .
2 3x

G G G u uG
u u x u

δ δ
δ δ

 ∂ ∂
= − = + ∂ ∂  

 

Then, the improved Boussinesq equation with Stokes damping has the fol-
lowing mass conservation property.  

Proposition 1. Let u be the solution of Equation (5). Then the total mass 

d
b

a
u x∫  is independent of t. Namely,  

 d d 0.
d

b

a
u x

t
=∫                          (6) 

The conservation of mass can be easily proved with periodic boundary condi-
tions. 

Proposition 2. Let u be the solution of Equation (5). Then the total energy 

( ), , d
b

ta
G u u v x∫ �  is independent of t. Namely,  

 ( )d , , d 0,
d

b
ta

G u u v x
t

≤∫ �                     (7) 
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where  

( ) ( ) ( )
22

, , .
2 2

t
t

uvG u u v G u= + +�  

Proof. According to the chain rule, we have  

d d d
d

b b
t t tt ta a

GG x vv u u u x
t u

δ
δ

 = + + 
 ∫ ∫�  

By the first equality of Equation (5), we can get  

d
b

t x xt xa

Gvv v v v x
u

δ
δ

 = + + 
 ∫  

Using the integration by part formula, we have  

d
b

t xxta

Gv v v x
x u

δ
δ

 ∂  = − −  ∂   
∫  

At last, according to the second equality of Equation (5), we can complete the 
proof  

2d d 0.
d

b b

a a
Gdx v x

t
γ= − ≤∫ ∫�  

2.2. Trial and Test Function Spaces 

The region of interest [ ],a b  can be decomposed into a grid hT  with nodes  

 0 1 2 1 .N Na x x x x x b−= < < < < < =�                 (8) 

where 1i ix x h−− =  and ( )h b a N= − . Denote  
[ ]{ }1: , , 1, 2, ,h i i i iT I I x x i N−= = = � . Accordingly, we place a dual grid *

hT  with 
nodes  

 1 2 3 2 3 2 10 2 ,N N Na x x x x x x b− −= < < < < < < =�           (9) 

where 1 2 2, 1, 2, ,i ix x h i N− = − = �  Denote 0 0 1 2,I x x∗  =   , 1 2 1 2,i i iI x x∗
− + =    

and 1 2 ,N N NI x x∗
− =   . 

Select the trial function space hU  as the linear element space with respect to 

hT . The basis function of the node ix  is  

 ( ) 1 11 , ,
0, elsewhere.

i i i
i

x x h x x x
xφ − + − − ≤ ≤= 


               (10) 

Then numerical solution U for Equation (5) can be uniquely written as 

( )
1

N

i i
i

U U xφ
=

= ∑ , where ( ),i iU U x t= . So in the element iI , we have  

 ( )1 1 ,i iU U Uµ µ−= − +                       (11) 

( )1 ,i iU U U h−′ = −                        (12) 

where ( )1ix x hµ −= − . 
The test function space hV  corresponding to *

hT  is taken as the piecewise 
constant function space. The test function of the nodes jx  is  
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 ( ) 1 2 1 21, ,

0, elsewhere,
j j

j

x x x
xψ − +≤ ≤= 


                  (13) 

In addition, we take t∆  as the time step and the numerical solution can be 
denoted by ( ),n

kU u kh n t∆ . 

Recall the definition ( ) ( ) ( )
22

, ,
2 2

t
t

uvG u u v G u= + +� . According to the defini-

tion of Euler-Lagrange derivative, we have G G
u u

δ δ
δ δ

=
�

, t
t

G u
u

δ
δ

=
�

 and G v
v

δ
δ

=
�

. 

So the Equation (5) can be rewritten as  

 

( )2

,

1 ,

t

x t

Gu
x v

Gv v
x u

δ
δ

δ γ
δ

  ∂
=  ∂  


 ∂ − ∂ = −  ∂  

�

�
                   (14) 

where 
2

2
2x x

∂
∂ =

∂
. 

Using any hVψ ∈  and hVψ ∈�  to multiply both sides of Equation (14) and 
integrating on the interval [ ],a b , we can obtain the following semi-discrete 
scheme  

 
( )

( )( )2

, , ,

1 , , ,

t

x t

Gu
x v

Gv v
x u

δψ ψ
δ

δψ γ ψ
δ

   ∂
=    ∂   


  ∂ − ∂ = −    ∂   

�

�
� �

              (15) 

where ( ),⋅ ⋅  denotes the inner product of [ ]( )2 ,L a b . 
Now we discretize the above semi-discrete scheme in time. To simplify the 

notation, we will use the difference operator 
1 1

1

2

n n
n

n
u uu

t
δ

+ −−
=

∆
. Additionally, 

we define the discrete version of Euler-Lagrange derivative 
2 3

2 3
G u u
u

δ
δ

= +
�

, 

t
t

G u
u

δ
δ

=
�

 and G v
v

δ
δ

=
�

 by  

 
( )

( )1 1

1 1
,

3, ,

n n n n
nd

n n n

u u u uG
u

u u u
δ

δ

+ −

+ −

+ +
= +

�
           (16) 

( )
1

1
,nd

nn
n

G
u

u

δ
δ

δ δ
=

�
                       (17) 

( )
.nd

n

G
v

v
δ
δ

=
�

                          (18) 

At last, we can get the following energy dissipation finite volume element 
schemes  
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( ) ( )

( )( ) ( )

1

12
1 1

, , ,

1 , , .
, ,

n d
n n

n nd
x n n n n

G
u

x v

G
v v

x u u u

δ
δ ψ ψ

δ

δ
δ ψ γ ψ

δ + −

   ∂   =
   ∂    


   ∂  − ∂ = −
  ∂   

�

�
� �

       (19) 

Under the periodic boundary conditions, the Equation (19) has the following 
discrete mass conservation law and energy dissipation property. 

Theorem 1. (Discrete mass conservation law). Under the discrete periodic 
boundary condition, then numerical solution by Equation (19) conserves mass  

 d .
b n
a

u x const=∫                         (20) 

Theorem 2. (Discrete energy dissipation property). Under the discrete peri-
odic boundary condition, then numerical solution by Equation (19) conserves 
energy  

 ( )11 d d 0.
b bn n

d da a
G x G x

t
+ − ≤

∆ ∫ ∫� �                  (21) 

Proof.  

( )

( ) ( ) ( )

( ) ( ) ( )

1

1 11 1
1 1

1 1 1

1 1

1 1

1 d

, , ,
2, ,

, ,
2, ,

b n n
d da

n n
n nd d n n d

n nn n n nn
n

n n
d d d x x

n n n n n

G G x
t

G G u u G
u v

tu u u vu

G G G v v
x x tu u u v v

δ δ δ δ δ
δ δ

δ δδ δ

δ δ δ
δ δ δ

+

+ −

+ −

+ −

+ −

−
∆

    −    = + +
    ∆     

       −∂ ∂      = +
      ∂ ∂ ∆      

∫ � �

� � �

� � �

( )

( ) ( ) ( ) ( )

( ) ( )

1

12
1 1

2

,

, 1 ,
, ,

, d 0

nd
nn

nd d d
x nn n n n n

bn nd
n a

G
v

v

G G G
v

x u u u v v

G
v v x

v

δ
δ

δ

δ δ δ
δ

δ δ δ

δ
γ γ

δ

+ −

 
 +
 
 

    ∂    = − + − ∂
    ∂     
 
 = − = − ≤
 
 

∫

�

� � �

�

 

2.3. Finite Volume Element Schemes 

For comparison, we employ the standard finite volume element scheme con-
structed based on the  

 ( ) ( )2 2

,

1 .
t x

x t x

u v

v u u vγ

=
 − ∂ = + −

                    (22) 

Then we can obtain the following finite volume element schemes  

 
( ) ( )

( )( ) ( )( )
1

212

, , ,

1 , , .

n n
n x

n n n n
x n

x

u v

v u u v

δ ψ ψ

δ ψ γ ψ

 =

  − ∂ = + −  

 
� �

           (23) 

Theorem 3. (Discrete mass conservation law). Under the discrete periodic 
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boundary condition, then numerical solution by Equation (23) conserves mass  

 d .
b n
a

u x const=∫                           (24) 

3. Validation of the Numerical Schemes 

In this section, we present some numerical examples to illustrate the accuracy 
and conservation property of the proposed numerical schemes. 

3.1. Accuracy 

The initial conditions are taken as  

 ( ) 2 0,0 sech ,
6

x x
u x αα

β
 −

=   
 

                    (25) 

( ) 2 0 0,0 2 sech tanh ,
6 6 6t

x x x x
u x α α αα

β β
   − −

=       
   

         (26) 

where α  is amplitude of the solitary wave which is initially centered at 0x x=  
travelling with velocity β . In addition, we will take 0 0x = , 0.5α = , 

0.04γ =  and the region [ ]20,80−  in the following. 
As the exact solution for the considered examples is not available, we will 

compute maximum absolute error for the considered examples using the half 
mesh principle. The maximum absolute error is defined as follows,  

 ( ) ( ) ( )2
2, max , 2 ,2 .t t

h hi
E h t u i n u i n∆ ∆∆ = −                (27) 

The maximum absolute errors Equation (3) and solitary wave with the above 
parameters have been computed at t = 1. They are displayed in Table 1 for the 
new finite volume element schemes (NFVEM). Examination of the table shows 
that the error measures of the finite volume element scheme diminish approx-
imately quadratically as the space step size and time step size are simultaneously 
halved. The error table illustrates that the new numerical schemes have 
second-order accuracy in space and time direction. 

Furthermore, we compute the problem using standard finite volume element 
schemes (FVEM). The obtained maximum absolute errors are displayed in Ta-
ble 2. From the table, we can find that the standard finite volume element 
schemes also have second-order accuracy in space and time direction. The 
maximum absolute errors computed by the two numerical schemes are consis-
tent. In other words, the proposed new schemes do not reduce the accuracy of 
the finite volume method. 

3.2. Conservation Properties 

Now we consider the conservation properties of the new finite volume element 
schemes and standard finite volume element schemes. The initial conditions and 
parameters are the same as the above except γ . 

Figure 1 shows the evolutions of discrete mass of the proposed new finite vo-
lume element schemes and standard finite volume element schemes with 410γ −= .  
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Table 1. The maximum absolute error for the NFVEM at t = 1. 

  h   

Δt 2 1 1/2 1/4 

h/4 2.36e−02 7.51e−3 1.94e−03 4.93e−4 

h/8 1.69e−02 5.70e−3 1.46e−03 3.67e−4 

h/16 1.45e−02 5.00e−3 1.27e−03 3.19e−4 

 
Table 2. The maximum absolute error for the FVEM at t = 1. 

  h   

Δt 2 1 1/2 1/4 

h/4 2.36e−02 7.48e−3 1.95e−03 4.95e−4 

h/8 1.69e−02 5.73e−3 1.47e−03 3.69e−4 

h/16 1.45e−02 5.02e−3 1.28e−03 3.20e−4 

 

 
Figure 1. The evolutions of the discrete mass: (a) FVEM; (b) NFVEM. 2 0.1h t= ∆ = . 
 

 
Figure 2. The evolutions of the discrete energy: (a) FVEM; (b) NFVEM. 
 
From the figure, we can find that the discrete mass is well conserved. Actually it 
is conserved up to the machine accuracy, which well agrees with the discrete 
mass conservation law. In other words, the Stokes damping will not change the 
mass of system. 

Figure 2 presents the evolutions of discrete energy of the proposed new finite 
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volume element schemes and standard finite volume element schemes with 
410γ −= . It is easy to find that the discrete energy obtained by standard finite 

volume element schemes decreases with oscillations. But the discrete energy ob-
tained by new finite volume element schemes will decrease continuously. So our 
new finite volume element schemes can preserve the energy dissipation property 
of the improved Boussinesq equation with Stokes damping. From this section, 
we can conclude that the proposed numerical schemes are more suitable for 
solving improved Boussinesq equation with Stokes damping. 

4. Conclusion 

In this paper, we have proposed a new finite volume element method for solving 
the improved Boussinesq equation with Stokes damping. The proposed method 
is second-order accurate in time and space. Furthermore, the new method can 
preserve the mass conservation and energy dissipation property. 
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