[1]
|
Utilization of Orange Peel Waste for the Green Synthesis of Iron Nanoparticles and its Application to Stimulate Growth and Biofortification on Solanum lycopersicum
Waste and Biomass Valorization,
2024
DOI:10.1007/s12649-024-02602-4
|
|
|
[2]
|
Understanding the role of magnetic (Fe3O4) nanoparticle to mitigate cadmium stress in radish (Raphanus sativus L.)
Botanical Studies,
2024
DOI:10.1186/s40529-024-00420-4
|
|
|
[3]
|
Abiotic Stresses in Wheat
2023
DOI:10.1016/B978-0-323-95368-9.00020-5
|
|
|
[4]
|
Effect and mechanism of nano iron oxide on muskmelon under cadmium stress
South African Journal of Botany,
2023
DOI:10.1016/j.sajb.2023.03.055
|
|
|
[5]
|
Effect of iron nanoparticles and conventional sources of Fe on growth, physiology and nutrient accumulation in wheat plants grown on normal and salt-affected soils
Journal of Hazardous Materials,
2023
DOI:10.1016/j.jhazmat.2023.131861
|
|
|
[6]
|
Effect and mechanism of nano iron oxide on muskmelon under cadmium stress
South African Journal of Botany,
2023
DOI:10.1016/j.sajb.2023.03.055
|
|
|
[7]
|
Biofortification with copper nanoparticles (Nps Cu) and its effect on the physical and nutraceutical quality of hydroponic melon fruits
Notulae Botanicae Horti Agrobotanici Cluj-Napoca,
2022
DOI:10.15835/nbha50112568
|
|
|
[8]
|
Impact of Fe3O4 nanoparticles on wheat and barley seeds germination and early growth
Materials Today: Proceedings,
2022
DOI:10.1016/j.matpr.2022.06.441
|
|
|
[9]
|
Biochemical Response of Oakleaf Lettuce Seedlings to Different Concentrations of Some Metal(oid) Oxide Nanoparticles
Agronomy,
2020
DOI:10.3390/agronomy10070997
|
|
|
[10]
|
The role of Fe-nano particles in scarlet sage responses to heavy metals stress
International Journal of Phytoremediation,
2020
DOI:10.1080/15226514.2020.1759507
|
|
|
[11]
|
Biochemical Response of Oakleaf Lettuce Seedlings to Different Concentrations of Some Metal(oid) Oxide Nanoparticles
Agronomy,
2020
DOI:10.3390/agronomy10070997
|
|
|
[12]
|
A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.)
Materials Research Express,
2020
DOI:10.1088/2053-1591/ab8b17
|
|
|
[13]
|
Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress
Journal of Plant Interactions,
2019
DOI:10.1080/17429145.2019.1626922
|
|
|
[14]
|
Nanoscience for Sustainable Agriculture
2019
DOI:10.1007/978-3-319-97852-9_2
|
|
|
[15]
|
Omics Technologies and Bio-Engineering
2018
DOI:10.1016/B978-0-12-815870-8.00012-7
|
|
|
[16]
|
Surface modification of Fe2O3 and MgO nanoparticles with agrowastes for the treatment of chlorosis in Glycine max
Nano Convergence,
2018
DOI:10.1186/s40580-018-0155-0
|
|
|
[17]
|
Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with Cajanus cajan
Journal of the Science of Food and Agriculture,
2017
DOI:10.1002/jsfa.8324
|
|
|
[18]
|
Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica
with Cajanus cajan
Journal of the Science of Food and Agriculture,
2017
DOI:10.1002/jsfa.8324
|
|
|
[19]
|
Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe 2 O 3 ) nanoparticles in corn ( Zea mays L.)
Chemosphere,
2016
DOI:10.1016/j.chemosphere.2016.05.083
|
|
|
[20]
|
In vitro assessment of physiological changes of watermelon ( Citrullus lanatus ) upon iron oxide nanoparticles exposure
Plant Physiology and Biochemistry,
2016
DOI:10.1016/j.plaphy.2016.08.003
|
|
|