[1]
|
Genic-SSR-based genetic diversity and population structure analysis in a global germplasm collection highlights the African origin of winged bean (Psophocarpus tetragonolobus L.)
Genetic Resources and Crop Evolution,
2024
DOI:10.1007/s10722-023-01624-6
|
|
|
[2]
|
Role of miRNAs in the regulation of proanthocyanidin biosynthesis in the legume Psophocarpus tetragonolobus (L.) DC.
Plant Growth Regulation,
2024
DOI:10.1007/s10725-023-00971-9
|
|
|
[3]
|
Shotgun proteomics and in silico analysis of potential allergens in mature seeds and sprouts of purple winged bean
Food Bioscience,
2024
DOI:10.1016/j.fbio.2024.103785
|
|
|
[4]
|
Tuber Development and Tuber Yield Potential of Winged Bean (Psophocarpus tetragonolobus (L.) DC.), an Alternative Crop for Animal Feed
Agronomy,
2024
DOI:10.3390/agronomy14071433
|
|
|
[5]
|
Population diversity analysis of an underutilized legume, winged bean (Psophocarpus tetragonolobus (L.) DC.) using ISSR markers
Plant Gene,
2023
DOI:10.1016/j.plgene.2023.100436
|
|
|
[6]
|
Electrochemical and surface characterization studies of winged bean extracts doped TEOS-PDMS sol-gel protective coatings on reinforcing bar in acidic medium
Industrial Crops and Products,
2023
DOI:10.1016/j.indcrop.2023.117030
|
|
|
[7]
|
Genotype – genotype × environment (GGE) biplot analysis of winged bean for grain yield
Acta Horticulturae et Regiotecturae,
2023
DOI:10.2478/ahr-2023-0009
|
|
|
[8]
|
Electrochemical and surface characterization studies of winged bean extracts doped TEOS-PDMS sol-gel protective coatings on reinforcing bar in acidic medium
Industrial Crops and Products,
2023
DOI:10.1016/j.indcrop.2023.117030
|
|
|
[9]
|
Genotype – genotype × environment (GGE) biplot analysis of winged bean for grain yield
Acta Horticulturae et Regiotecturae,
2023
DOI:10.2478/ahr-2023-0009
|
|
|
[10]
|
Genotype – genotype × environment (GGE) biplot analysis of winged bean for grain yield
Acta Horticulturae et Regiotecturae,
2023
DOI:10.2478/ahr-2023-0009
|
|
|
[11]
|
Genic-SSR-based genetic diversity and population structure analysis in a global germplasm collection highlights the African origin of winged bean (Psophocarpus tetragonolobus L.)
Genetic Resources and Crop Evolution,
2023
DOI:10.1007/s10722-023-01624-6
|
|
|
[12]
|
Electrochemical and surface characterization studies of winged bean extracts doped TEOS-PDMS sol-gel protective coatings on reinforcing bar in acidic medium
Industrial Crops and Products,
2023
DOI:10.1016/j.indcrop.2023.117030
|
|
|
[13]
|
Biochemical composition, bioactivity, processing, and food applications of winged bean (Psophocarpus tetragonolobus): A review
Legume Science,
2023
DOI:10.1002/leg3.187
|
|
|
[14]
|
Reducing the biosynthesis of condensed tannin in winged bean (Psophocarpus tetragonolobus (L.) DC.) by virus-induced gene silencing of anthocyanidin synthase (ANS) gene
3 Biotech,
2023
DOI:10.1007/s13205-022-03435-5
|
|
|
[15]
|
Neglected and Underutilized Crops
2023
DOI:10.1016/B978-0-323-90537-4.00022-3
|
|
|
[16]
|
Role of miRNAs in the regulation of proanthocyanidin biosynthesis in the legume Psophocarpus tetragonolobus (L.) DC.
Plant Growth Regulation,
2023
DOI:10.1007/s10725-023-00971-9
|
|
|
[17]
|
Biochemical composition, bioactivity, processing, and food applications of winged bean (
Psophocarpus tetragonolobus
): A review
Legume Science,
2023
DOI:10.1002/leg3.187
|
|
|
[18]
|
Nutritional, functional, and bioactive properties of african underutilized legumes
Frontiers in Plant Science,
2023
DOI:10.3389/fpls.2023.1105364
|
|
|
[19]
|
Production Technology of Underutilized Vegetable Crops
2023
DOI:10.1007/978-3-031-15385-3_3
|
|
|
[20]
|
Genetic Diversity Assessment of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] Accessions Using Agronomic and Seed Morphometric Traits
Crops,
2023
DOI:10.3390/crops3020017
|
|
|
[21]
|
Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte
Journal of the Indian Chemical Society,
2022
DOI:10.1016/j.jics.2021.100329
|
|
|
[22]
|
Future Foods
2022
DOI:10.1016/B978-0-323-91001-9.00023-2
|
|
|
[23]
|
Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte
Journal of the Indian Chemical Society,
2022
DOI:10.1016/j.jics.2021.100329
|
|
|
[24]
|
The First Genetic Linkage Map of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] and QTL Mapping for Flower-, Pod-, and Seed-Related Traits
Plants,
2022
DOI:10.3390/plants11040500
|
|
|
[25]
|
Evaluation of divergence in underutilized wonder legume winged bean [Psophocarpus tetragonolobus (L.) DC.] using ISSR markers
Vegetos,
2022
DOI:10.1007/s42535-021-00282-2
|
|
|
[26]
|
Advances in Legumes for Sustainable Intensification
2022
DOI:10.1016/B978-0-323-85797-0.00027-6
|
|
|
[27]
|
Genetic diversity of domestic (Thai) and imported winged bean [Psophocarpus tetragonolobus (L.) DC.] cultivars assessed by morphological traits and microsatellite markers
Annals of Agricultural Sciences,
2022
DOI:10.1016/j.aoas.2022.04.002
|
|
|
[28]
|
The place of neglected and underutilized legumes in human nutrition and protein security in Nigeria
Critical Reviews in Food Science and Nutrition,
2022
DOI:10.1080/10408398.2020.1871319
|
|
|
[29]
|
Enhancement of physicochemical characteristics of palm olein and winged bean (Psophocarpus tetragonolobus) seed oil blends
OCL,
2022
DOI:10.1051/ocl/2021049
|
|
|
[30]
|
Underutilised Crop Genomes
Compendium of Plant Genomes,
2022
DOI:10.1007/978-3-031-00848-1_17
|
|
|
[31]
|
Annual Plant Reviews online
2022
DOI:10.1002/9781119312994.apr0796
|
|
|
[32]
|
Annual Plant Reviews online
2022
DOI:10.1002/9781119312994.apr0796
|
|
|
[33]
|
The First Genetic Linkage Map of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] and QTL Mapping for Flower-, Pod-, and Seed-Related Traits
Plants,
2022
DOI:10.3390/plants11040500
|
|
|
[34]
|
Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields
Plants,
2021
DOI:10.3390/plants10081746
|
|
|
[35]
|
Chemical characterization of winged bean (Psophocarpus tetragonolobus (L.) DC. seeds and safety evaluation of its fatty oil
Journal of Food Measurement and Characterization,
2021
DOI:10.1007/s11694-020-00680-1
|
|
|
[36]
|
Dual-Purpose of the Winged Bean (Psophocarpus tetragonolobus (L.) DC.), the Neglected Tropical Legume, Based on Pod and Tuber Yields
Plants,
2021
DOI:10.3390/plants10081746
|
|
|
[37]
|
Psophocarpus tetragonolobus: An Underused Species with Multiple Potential Uses
Plants,
2020
DOI:10.3390/plants9121730
|
|
|
[38]
|
Developments and Prospects in Imperative Underexploited Vegetable Legumes Breeding: A Review
International Journal of Molecular Sciences,
2020
DOI:10.3390/ijms21249615
|
|
|
[39]
|
Winged bean: An underutilized tropical legume on the path of improvement, to help mitigate food and nutrition security
Scientia Horticulturae,
2020
DOI:10.1016/j.scienta.2019.108789
|
|
|
[40]
|
Effects of shading on the growth, development and yield of winged bean (Psophocarpus tetragonolobus)
Ciência Rural,
2020
DOI:10.1590/0103-8478cr20190570
|
|
|
[41]
|
Developing the role of legumes in West Africa under climate change
Current Opinion in Plant Biology,
2020
DOI:10.1016/j.pbi.2020.05.002
|
|
|
[42]
|
The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities
Journal of Food Processing and Preservation,
2020
DOI:10.1111/jfpp.14680
|
|
|
[43]
|
Psophocarpus tetragonolobus: An Underused Species with Multiple Potential Uses
Plants,
2020
DOI:10.3390/plants9121730
|
|
|
[44]
|
Developments and Prospects in Imperative Underexploited Vegetable Legumes Breeding: A Review
International Journal of Molecular Sciences,
2020
DOI:10.3390/ijms21249615
|
|
|
[45]
|
PENGARUH PERBEDAAN WAKTU PANEN TERHADAP KARAKTERISTIK KIMIA BIJI KECIPIR
Jurnal Teknologi dan Industri Pangan,
2019
DOI:10.6066/jtip.2019.30.2.133
|
|
|
[46]
|
Valorization of winged bean (Psophocarpus tetragonolobus (L) DC) by evaluation of its antioxidant activity through chemometric analysis
South African Journal of Botany,
2019
DOI:10.1016/j.sajb.2018.10.026
|
|
|
[47]
|
OMICS-Based Approaches in Plant Biotechnology
2019
DOI:10.1002/9781119509967.ch1
|
|
|
[48]
|
Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction
Planta,
2019
DOI:10.1007/s00425-019-03141-2
|
|
|
[49]
|
Recent Advances in Grain Crops Research [Working Title]
2019
DOI:10.5772/intechopen.87069
|
|
|
[50]
|
OMICS‐Based Approaches in Plant Biotechnology
2019
DOI:10.1002/9781119509967.ch1
|
|
|
[51]
|
Origin and diversification of winged bean (Psophocarpus tetragonolobus (L.) DC.), a multipurpose underutilized legume
American Journal of Botany,
2018
DOI:10.1002/ajb2.1093
|
|
|
[52]
|
Origin and diversification of winged bean (Psophocarpus tetragonolobus
(L.) DC.), a multipurpose underutilized legume
American Journal of Botany,
2018
DOI:10.1002/ajb2.1093
|
|
|
[53]
|
Development of Gene‐Based SSR Markers in Winged Bean (Psophocarpus tetragonolobus (L.) DC.) for Diversity Assessment
Genes,
2017
DOI:10.3390/genes8030100
|
|
|
[54]
|
A Review on Current Status and Future Prospects of Winged Bean (Psophocarpus tetragonolobus) in Tropical Agriculture
Plant Foods for Human Nutrition,
2017
DOI:10.1007/s11130-017-0627-0
|
|
|
[55]
|
Development of Gene‐Based SSR Markers in Winged Bean (Psophocarpus tetragonolobus (L.) DC.) for Diversity Assessment
Genes,
2017
DOI:10.3390/genes8030100
|
|
|
[56]
|
Molecular genetic tools to support genetic improvement of winged bean (Psophocarpus tetragonolobus) for food and nutrition security
Acta Horticulturae,
2016
DOI:10.17660/ActaHortic.2016.1110.1
|
|
|
[57]
|
Physicochemical analysis of Psophocarpus tetragonolobus (L.) DC seeds with fatty acids and total lipids compositions
Journal of Food Science and Technology,
2014
DOI:10.1007/s13197-014-1436-1
|
|
|
[58]
|
Establishment of an efficient and rapid method of multiple shoot regeneration and a comparative phenolics profile inin vitroand greenhouse-grown plants ofpsophocarpus tetragonolobus(L.) DC
Plant Signaling & Behavior,
2014
DOI:10.4161/15592316.2014.970443
|
|
|