[1]
|
Nanofluids: Critical issues, economics and sustainability perspectives
Particuology,
2024
DOI:10.1016/j.partic.2023.06.021
|
|
|
[2]
|
Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid
The Canadian Journal of Chemical Engineering,
2024
DOI:10.1002/cjce.25207
|
|
|
[3]
|
Towards Nanofluids for Large-Scale Industrial Applications
2024
DOI:10.1016/B978-0-443-15483-6.00012-3
|
|
|
[4]
|
Molecular dynamics study of the rheology of benzene-based nanofluids with metal particles
Journal of Molecular Liquids,
2024
DOI:10.1016/j.molliq.2024.124805
|
|
|
[5]
|
Experimental investigation, modelling, and order of magnitude analysis of oxygen mass transfer in pulsed plate column with α‐Fe2O3 nanofluid
The Canadian Journal of Chemical Engineering,
2024
DOI:10.1002/cjce.25207
|
|
|
[6]
|
Effective thermal management through feasibility study of energy recuperation on synthesised SiC-propylene glycol nanofluids for achieving environmental sustainability
Journal of Thermal Analysis and Calorimetry,
2024
DOI:10.1007/s10973-024-13399-8
|
|
|
[7]
|
Nano-refrigerants and Nano-lubricants
2024
DOI:10.1016/B978-0-443-13486-9.00003-4
|
|
|
[8]
|
Preparation of graphene based nanofluids: Rheology determination and theoretical analysis of the molecular interactions of graphene nanoparticles
Journal of Molecular Liquids,
2023
DOI:10.1016/j.molliq.2023.122954
|
|
|
[9]
|
An Experimental Study on Some Thermophysical Characteristics of CuO-Water Nanofluid
Journal of Nanofluids,
2023
DOI:10.1166/jon.2023.2094
|
|
|
[10]
|
An Experimental Study on Some Thermophysical Characteristics of CuO-Water Nanofluid
Journal of Nanofluids,
2023
DOI:10.1166/jon.2023.2094
|
|
|
[11]
|
Flow across moving plate at separated stagnation point: Features of corcione’s correlation with Thompson and Troian slip and melting heat
Numerical Heat Transfer, Part B: Fundamentals,
2023
DOI:10.1080/10407790.2023.2270155
|
|
|
[12]
|
Nanoparticle formulation for intra-articular treatment of osteoarthritic joints
Biotribology,
2023
DOI:10.1016/j.biotri.2023.100262
|
|
|
[13]
|
Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers
Physics-Uspekhi,
2023
DOI:10.3367/UFNe.2021.12.039124
|
|
|
[14]
|
Preparation of graphene based nanofluids: Rheology determination and theoretical analysis of the molecular interactions of graphene nanoparticles
Journal of Molecular Liquids,
2023
DOI:10.1016/j.molliq.2023.122954
|
|
|
[15]
|
Entropy generation of Al2O3/water nanofluid in corrugated channels
Journal of Thermal Engineering,
2023
DOI:10.18186/thermal.1327113
|
|
|
[16]
|
Rheological behavior of dilute graphene-water nanofluids using various surfactants: An experimental evaluation
Journal of Molecular Liquids,
2023
DOI:10.1016/j.molliq.2022.120987
|
|
|
[17]
|
Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers
Uspekhi Fizicheskih Nauk,
2023
DOI:10.3367/UFNr.2021.12.039124
|
|
|
[18]
|
The Impact of Silicon Dioxide Nanoparticle Size on the Viscosity and Stability of Nanofluids: A Comprehensive Study
ECS Advances,
2023
DOI:10.1149/2754-2734/ace121
|
|
|
[19]
|
Further research on the improvement of models and computer programs for the prediction and analysis of the physical properties of polymers
Physics-Uspekhi,
2023
DOI:10.3367/UFNe.2021.12.039124
|
|
|
[20]
|
Enhanced Thermo-Fluidic Performance of Aqueous SiO2 Nanofluid Flow Through a Horizontal Tube—An Experimental Investigation
Journal of Nanofluids,
2022
DOI:10.1166/jon.2022.1879
|
|
|
[21]
|
Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review
Renewable and Sustainable Energy Reviews,
2022
DOI:10.1016/j.rser.2021.111738
|
|
|
[22]
|
The mechanism of oil viscosity reduction with the addition of graphene nanoparticles
Journal of Molecular Liquids,
2022
DOI:10.1016/j.molliq.2022.119551
|
|
|
[23]
|
Use of nanofluids based on carbon nanoparticles to displace oil from the porous medium mode
Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy,
2022
DOI:10.21684/2411-7978-2022-8-3-106-125
|
|
|
[24]
|
Preparation, Characterization, Stability and Thermophysical Properties of Bio, Non-Bio (Metallic and Non-Metallic) and Hybrids Nanofluids: A Review
Journal of Nanofluids,
2022
DOI:10.1166/jon.2022.1896
|
|
|
[25]
|
The mechanism of oil viscosity reduction with the addition of graphene nanoparticles
Journal of Molecular Liquids,
2022
DOI:10.1016/j.molliq.2022.119551
|
|
|
[26]
|
Thermo-fluidic performance of SiO2–ZnO/water hybrid nanofluid on enhancement of heat transport in a tube: Experimental results
International Journal of Thermal Sciences,
2022
DOI:10.1016/j.ijthermalsci.2022.107808
|
|
|
[27]
|
Thermal conductivity and surface tension of graphene–Al2O3/ethylene glycol–water hybrid nanofluid at sub-zero temperatures: an experimental study
Journal of Thermal Analysis and Calorimetry,
2022
DOI:10.1007/s10973-022-11587-y
|
|
|
[28]
|
Evaluation of stability, viscosity and electrical conductivity of [C2mim][DCA] based ionanocolloids
Heat and Mass Transfer,
2022
DOI:10.1007/s00231-022-03324-w
|
|
|
[29]
|
Synergistic effect of nickel nanoparticles with tetralin on the rheology and upgradation of extra heavy oil
Fuel,
2022
DOI:10.1016/j.fuel.2021.122035
|
|
|
[30]
|
Synergistic effect of nickel nanoparticles with tetralin on the rheology and upgradation of extra heavy oil
Fuel,
2022
DOI:10.1016/j.fuel.2021.122035
|
|
|
[31]
|
Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review
Renewable and Sustainable Energy Reviews,
2022
DOI:10.1016/j.rser.2021.111738
|
|
|
[32]
|
Ultrasonic Investigation of Viscoelastic Properties in Silver Nanofluids
Asian Journal of Chemistry,
2022
DOI:10.14233/ajchem.2022.23493
|
|
|
[33]
|
Magma / Suspension Rheology
Reviews in Mineralogy and Geochemistry,
2022
DOI:10.2138/rmg.2022.87.14
|
|
|
[34]
|
Thermal Conductivity and Rheological Studies for Graphene-Al2O3 / Ethylene Glycol-Water Hybrid Nanofluid at Low Temperatures
Journal of Nano Research,
2022
DOI:10.4028/p-h9do2u
|
|
|
[35]
|
The mechanism of oil viscosity reduction with the addition of graphene nanoparticles
Journal of Molecular Liquids,
2022
DOI:10.1016/j.molliq.2022.119551
|
|
|
[36]
|
The mechanism of oil viscosity reduction with the addition of graphene nanoparticles
Journal of Molecular Liquids,
2022
DOI:10.1016/j.molliq.2022.119551
|
|
|
[37]
|
Synergistic effect of nickel nanoparticles with tetralin on the rheology and upgradation of extra heavy oil
Fuel,
2022
DOI:10.1016/j.fuel.2021.122035
|
|
|
[38]
|
Stability analysis of multiple solutions in case of a stretched nanofluid flow obeying Corcione's correlation: An extended Darcy model
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
2021
DOI:10.1002/zamm.202000172
|
|
|
[39]
|
Stability analysis of multiple solutions in case of a stretched nanofluid flow obeying Corcione's correlation: An extended Darcy model
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
2021
DOI:10.1002/zamm.202000172
|
|
|
[40]
|
Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube
International Journal of Thermal Sciences,
2021
DOI:10.1016/j.ijthermalsci.2020.106581
|
|
|
[41]
|
Darcy-Forchheimer porous medium effect on rotating hybrid nanofluid on a linear shrinking/stretching sheet
International Journal of Numerical Methods for Heat & Fluid Flow,
2021
DOI:10.1108/HFF-11-2020-0716
|
|
|
[42]
|
Low-frequency (105 Hz) shear modulus of nanosuspension
IOP Conference Series: Materials Science and Engineering,
2021
DOI:10.1088/1757-899X/1198/1/012001
|
|
|
[43]
|
Numerical and experimental evaluation of nanofluids based photovoltaic/thermal systems in Oman: Using silicone-carbide nanoparticles with water-ethylene glycol mixture
Case Studies in Thermal Engineering,
2021
DOI:10.1016/j.csite.2021.101009
|
|
|
[44]
|
Modeling and Prediction of the Dynamic Viscosity of Nanofluids by a Homogenization Method
Brazilian Journal of Physics,
2021
DOI:10.1007/s13538-021-00909-4
|
|
|
[45]
|
Molecular dynamics simulation of water-based nanofluids viscosity
Journal of Thermal Analysis and Calorimetry,
2021
DOI:10.1007/s10973-020-09873-8
|
|
|
[46]
|
Effect of charge on aerosol microphysics of particles emitted from a hot wire generator: Theory and experiments
Aerosol Science and Technology,
2021
DOI:10.1080/02786826.2021.1931011
|
|
|
[47]
|
Impact on mechanical robustness of water droplet due to hydrophilic nanoparticles
Physics of Fluids,
2020
DOI:10.1063/5.0025558
|
|
|
[48]
|
Enhancing Thermo-Economic Performance of TiO2-Water Nanofluids: An Experimental Investigation
JOM,
2020
DOI:10.1007/s11837-020-04336-9
|
|
|
[49]
|
Enhancing Thermophysical Characteristics and Heat Transfer Potential of TiO2/Water Nanofluid
International Journal of Thermophysics,
2020
DOI:10.1007/s10765-020-02745-1
|
|
|
[50]
|
In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
Science Advances,
2020
DOI:10.1126/sciadv.abb0413
|
|
|
[51]
|
Thermocapillary waves formation at the interface of hydrocarbons and graphene-like nanofluids
Journal of Physics: Conference Series,
2020
DOI:10.1088/1742-6596/1677/1/012145
|
|
|
[52]
|
Non‐Newtonian Thermosensitive Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids
Small,
2020
DOI:10.1002/smll.201907661
|
|
|
[53]
|
In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions
Science Advances,
2020
DOI:10.1126/sciadv.abb0413
|
|
|
[54]
|
The Use of Nanoparticles to Displace Oil from a Porous Medium
Journal of Physics: Conference Series,
2020
DOI:10.1088/1742-6596/1683/2/022082
|
|
|
[55]
|
Thermal and Hydraulic Performance of CuO/Water Nanofluids: A Review
Micromachines,
2020
DOI:10.3390/mi11040416
|
|
|
[56]
|
Influence of Oxidation Degree of Graphene Oxide on the Shear Rheology of Poly(ethylene glycol) Suspensions
Fluids,
2020
DOI:10.3390/fluids5020041
|
|
|
[57]
|
Particle formation from vapors emitted from glowing wires: Theory and experiments
Aerosol Science and Technology,
2020
DOI:10.1080/02786826.2019.1688758
|
|
|
[58]
|
Rheology of ionanofluids – A review
Journal of Molecular Liquids,
2020
DOI:10.1016/j.molliq.2020.112568
|
|
|
[59]
|
Influence of Oxidation Degree of Graphene Oxide on the Shear Rheology of Poly(ethylene glycol) Suspensions
Fluids,
2020
DOI:10.3390/fluids5020041
|
|
|
[60]
|
Thermal and Hydraulic Performance of CuO/Water Nanofluids: A Review
Micromachines,
2020
DOI:10.3390/mi11040416
|
|
|
[61]
|
Diffusion of Overheated and Overcooled Particles as a Mechanism of Thermal Conductivity in Nanofluids
JETP Letters,
2020
DOI:10.1134/S0021364020060065
|
|
|
[62]
|
Non‐Newtonian Thermosensitive Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids
Small,
2020
DOI:10.1002/smll.201907661
|
|
|
[63]
|
Stability analysis of multiple solutions in case of a stretched nanofluid flow obeying Corcione's correlation: An extended Darcy model
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
2020
DOI:10.1002/zamm.202000172
|
|
|
[64]
|
Impact on mechanical robustness of water droplet due to hydrophilic nanoparticles
Physics of Fluids,
2020
DOI:10.1063/5.0025558
|
|
|
[65]
|
The Semi-empirical Approach for Newtonian Nanofluids Viscosity Predicting
2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP),
2020
DOI:10.1109/NAP51477.2020.9309562
|
|
|
[66]
|
USE OF NANOFLUIDS BASED ON CARBON NANOPARTICLES TO DISPLACE OIL FROM THE POROUS MEDIUM MODEL
Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy,
2020
DOI:10.21684/2411-7978-2020-6-4-141-157
|
|
|
[67]
|
Polymer and nanoparticles flooding as a new method for Enhanced Oil Recovery
Journal of Petroleum Science and Engineering,
2019
DOI:10.1016/j.petrol.2019.02.070
|
|
|
[68]
|
A Numerical Study of 2-D Convective Heat Transfer of Nanofluid (Al2O3/H2O) in a Lid Driven Cavity with Square Cylinder at the Centre
Materials Today: Proceedings,
2019
DOI:10.1016/j.matpr.2019.03.030
|
|
|
[69]
|
Thermophysical Properties of Complex Materials [Working Title]
2019
DOI:10.5772/intechopen.85821
|
|
|
[70]
|
On the Effect of Nanoparticles on Fluid Structure
Colloid Journal,
2019
DOI:10.1134/S1061933X19040136
|
|
|
[71]
|
An experimental study on hydraulic and thermal performances of hybrid nanofluids in mini-channel
Journal of Thermal Analysis and Calorimetry,
2019
DOI:10.1007/s10973-019-08626-6
|
|
|
[72]
|
Branched polymers and nanoparticles flooding as separate processes for enhanced oil recovery
Fuel,
2019
DOI:10.1016/j.fuel.2019.115996
|
|
|
[73]
|
Optimum volume fraction of nanoparticles for enhancing oil recovery by nanosilica/supercritical CO2 flooding in porous medium
Journal of Petroleum Science and Engineering,
2019
DOI:10.1016/j.petrol.2019.106599
|
|
|
[74]
|
Thermo-economic performance analysis of Al2O3-water nanofluids — An experimental investigation
Journal of Molecular Liquids,
2019
DOI:10.1016/j.molliq.2019.112200
|
|
|
[75]
|
On efficiency of convective heat transfer of nanofluids in laminar flow regime
International Journal of Heat and Mass Transfer,
2019
DOI:10.1016/j.ijheatmasstransfer.2019.05.016
|
|
|
[76]
|
Polymer and nanoparticles flooding as a new method for Enhanced Oil Recovery
Journal of Petroleum Science and Engineering,
2019
DOI:10.1016/j.petrol.2019.02.070
|
|
|
[77]
|
Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
2018
DOI:10.1016/j.colsurfa.2018.06.051
|
|
|
[78]
|
Experimental and numerical study on heat transfer enhancements of concentric tube heat exchanger using water based nanofluids
2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA),
2018
DOI:10.1109/ICREGA.2018.8337627
|
|
|
[79]
|
Plenty of Room at the Bottom: Nanotechnology as Solution to an Old Issue in Enhanced Oil Recovery
Applied Sciences,
2018
DOI:10.3390/app8122596
|
|
|
[80]
|
Thermophysical properties of nanofluids
The European Physical Journal E,
2018
DOI:10.1140/epje/i2018-11616-9
|
|
|
[81]
|
A thermodynamic model of nanofluid viscosity based on a generalized Maxwell-type constitutive equation
Journal of Non-Newtonian Fluid Mechanics,
2018
DOI:10.1016/j.jnnfm.2018.01.005
|
|
|
[82]
|
Influence of Agglomeration on the Viscosity of Nanofluids
Journal of Engineering Physics and Thermophysics,
2018
DOI:10.1007/s10891-018-1725-z
|
|
|
[83]
|
Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants
International Journal of Refrigeration,
2018
DOI:10.1016/j.ijrefrig.2018.01.015
|
|
|
[84]
|
Micro- and Nanoflows
Fluid Mechanics and Its Applications,
2018
DOI:10.1007/978-3-319-75523-6_1
|
|
|
[85]
|
Novel Nanomaterials - Synthesis and Applications
2018
DOI:10.5772/intechopen.72267
|
|
|
[86]
|
Gyrotactic microorganisms and thermoelectric effects on the dynamics of 29 nm CuO-water nanofluid over an upper horizontal surface of paraboloid of revolution
Multidiscipline Modeling in Materials and Structures,
2018
DOI:10.1108/MMMS-10-2017-0116
|
|
|
[87]
|
Research on Thermophysical Properties of Nanoliquids Based on SiO2 Nanoparticles for Use as a Heat-Transfer Medium in Solar-Thermal Converters
Applied Solar Energy,
2018
DOI:10.3103/S0003701X18010024
|
|
|
[88]
|
Effects of nanoparticles and temperature on heavy oil viscosity
Journal of Petroleum Science and Engineering,
2018
DOI:10.1016/j.petrol.2018.04.069
|
|
|
[89]
|
Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review
Journal of Molecular Liquids,
2018
DOI:10.1016/j.molliq.2018.05.129
|
|
|
[90]
|
Thermophysical and tribological properties of dispersions based on graphene and a trimethylolpropane trioleate oil
Journal of Molecular Liquids,
2018
DOI:10.1016/j.molliq.2018.07.107
|
|
|
[91]
|
Experimental investigation on stability and thermo-physical properties of Al2O3–SiO2/PAG nanolubricants with different nanoparticle ratios
Journal of Thermal Analysis and Calorimetry,
2018
DOI:10.1007/s10973-018-7670-4
|
|
|
[92]
|
Theoretical study of nanofluids behavior at critical Rayleigh numbers
Journal of Thermal Analysis and Calorimetry,
2018
DOI:10.1007/s10973-018-7582-3
|
|
|
[93]
|
DEPENDENCY OF NANOFLUID RHEOLOGY ON PARTICLE SIZE AND CONCENTRATION OF VARIOUS METAL OXIDE NANOPARTICLES
Brazilian Journal of Chemical Engineering,
2018
DOI:10.1590/0104-6632.20180352s20160172
|
|
|
[94]
|
About rheology of nanofluids
2018
DOI:10.1063/1.5065235
|
|
|
[95]
|
Plenty of Room at the Bottom: Nanotechnology as Solution to an Old Issue in Enhanced Oil Recovery
Applied Sciences,
2018
DOI:10.3390/app8122596
|
|
|
[96]
|
Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances
Journal of Petroleum Science and Engineering,
2018
DOI:10.1016/j.petrol.2017.11.067
|
|
|
[97]
|
Scrutinization of thermal stratification, nonlinear thermal radiation and quartic autocatalytic chemical reaction effects on the flow of three-dimensional Eyring-Powell alumina-water nanofluid
Multidiscipline Modeling in Materials and Structures,
2017
DOI:10.1108/MMMS-08-2017-0077
|
|
|
[98]
|
Simulation of the thermal conductivity of a nanofluid with small particles by molecular dynamics methods
Technical Physics,
2017
DOI:10.1134/S1063784217100206
|
|
|
[99]
|
Nanoparticles influence on wetting behaviour of fractured limestone formation
Journal of Petroleum Science and Engineering,
2017
DOI:10.1016/j.petrol.2016.11.017
|
|
|
[100]
|
Advances in New Heat Transfer Fluids
Heat Transfer,
2017
DOI:10.1201/9781315368184-10
|
|
|
[101]
|
Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and Brownian motion of 29 nm CuO
International Journal of Mechanical Sciences,
2017
DOI:10.1016/j.ijmecsci.2017.02.020
|
|
|
[102]
|
Synthesis and characterization of Zn-Al layered double hydroxide nanofluid and its application as a coolant in metal quenching
Applied Clay Science,
2017
DOI:10.1016/j.clay.2017.03.028
|
|
|
[103]
|
Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging
Journal of Electronic Materials,
2017
DOI:10.1007/s11664-017-5591-9
|
|
|
[104]
|
Thermo-physical properties of Al 2 O 3 -SiO 2 /PAG composite nanolubricant for refrigeration system
International Journal of Refrigeration,
2017
DOI:10.1016/j.ijrefrig.2017.04.024
|
|
|
[105]
|
Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate
Experimental Thermal and Fluid Science,
2017
DOI:10.1016/j.expthermflusci.2017.08.023
|
|
|
[106]
|
Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: critical analysis
Heat and Mass Transfer,
2016
DOI:10.1007/s00231-015-1682-4
|
|
|
[107]
|
Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation
Numerical Heat Transfer, Part A: Applications,
2016
DOI:10.1080/10407782.2015.1109369
|
|
|
[108]
|
Prediction of graphite nanofluids' dynamic viscosity by means of artificial neural networks
International Communications in Heat and Mass Transfer,
2016
DOI:10.1016/j.icheatmasstransfer.2016.02.010
|
|
|
[109]
|
Molecular dynamics simulation of pressure isotherms for nanofluids
Colloid Journal,
2016
DOI:10.1134/S1061933X16020113
|
|
|
[110]
|
Effects of temperature and solid volume fraction on viscosity of SiO 2 -MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines
Applied Thermal Engineering,
2016
DOI:10.1016/j.applthermaleng.2016.04.002
|
|
|
[111]
|
Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
Materials,
2016
DOI:10.3390/ma9060455
|
|
|
[112]
|
Experimental data on the dependence of the viscosity of water- and ethylene glycol-based nanofluids on the size and material of particles
Doklady Physics,
2016
DOI:10.1134/S1028335816030113
|
|
|
[113]
|
Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid
Journal of Magnetism and Magnetic Materials,
2016
DOI:10.1016/j.jmmm.2016.05.029
|
|
|
[114]
|
Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution
International Journal of Thermal Sciences,
2016
DOI:10.1016/j.ijthermalsci.2016.06.003
|
|
|
[115]
|
Investigation of heat transfer of nanofluids in turbulent flow in a cylindrical channel
Fluid Dynamics,
2016
DOI:10.1134/S0015462816020071
|
|
|
[116]
|
47nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction
Alexandria Engineering Journal,
2016
DOI:10.1016/j.aej.2016.04.030
|
|
|
[117]
|
A review of thermophysical properties of water based composite nanofluids
Renewable and Sustainable Energy Reviews,
2016
DOI:10.1016/j.rser.2016.08.036
|
|
|
[118]
|
Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential
European Journal of Pharmaceutical Sciences,
2016
DOI:10.1016/j.ejps.2016.07.004
|
|
|
[119]
|
Nanoscience in Dermatology
2016
DOI:10.1016/B978-0-12-802926-8.00002-1
|
|
|
[120]
|
Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity
Powder Technology,
2016
DOI:10.1016/j.powtec.2016.07.023
|
|
|
[121]
|
Phenomenological formula for thermal conductivity coefficient of water-based nanofluids
Colloid Journal,
2016
DOI:10.1134/S1061933X16040153
|
|
|
[122]
|
Physics and mechanics of heat exchange processes in nanofluid flows
Physical Mesomechanics,
2016
DOI:10.1134/S1029959916030085
|
|
|
[123]
|
The investigation of boiling crisis of nanofluids
MATEC Web of Conferences,
2016
DOI:10.1051/matecconf/20168400025
|
|
|
[124]
|
Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
Materials,
2016
DOI:10.3390/ma9060455
|
|
|
[125]
|
Handbook of Nanoparticles
2016
DOI:10.1007/978-3-319-15338-4_54
|
|
|
[126]
|
Handbook of Nanoparticles
2015
DOI:10.1007/978-3-319-13188-7_54-1
|
|
|
[127]
|
Bioinspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair
Advanced Healthcare Materials,
2015
DOI:10.1002/adhm.201500419
|
|
|
[128]
|
Transparent Silicone Calcium Fluoride Nanocomposite with Improved Thermal Conductivity
Macromolecular Materials and Engineering,
2015
DOI:10.1002/mame.201400172
|
|
|
[129]
|
Bioinspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair
Advanced Healthcare Materials,
2015
DOI:10.1002/adhm.201500419
|
|
|
[130]
|
Transparent Silicone Calcium Fluoride Nanocomposite with Improved Thermal Conductivity
Macromolecular Materials and Engineering,
2015
DOI:10.1002/mame.201400172
|
|
|
[131]
|
Empirical equation for the prediction of viscosity for some common nanofluids
Colloid Journal,
2015
DOI:10.1134/S1061933X15020040
|
|
|
[132]
|
Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids
Rheologica Acta,
2015
DOI:10.1007/s00397-015-0838-y
|
|
|
[133]
|
Thermal transport and tribological properties of nanogreases for metal-mechanic applications
Wear,
2015
DOI:10.1016/j.wear.2015.01.062
|
|
|
[134]
|
Simulation of the nanofluid viscosity coefficient by the molecular dynamics method
Technical Physics,
2015
DOI:10.1134/S1063784215060237
|
|
|
[135]
|
Measurement of the heat transfer coefficient of a nanofluid based on water and copper oxide particles in a cylindrical channel
High Temperature,
2015
DOI:10.1134/S0018151X15020169
|
|
|
[136]
|
Handbook of Nanoparticles
2015
DOI:10.1007/978-3-319-13188-7_54-1
|
|
|
[137]
|
Measuring of critical density of heat flow during boiling of nanoliquids on a cylindrical heater
Technical Physics Letters,
2014
DOI:10.1134/S1063785014070062
|
|
|
[138]
|
Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate
Materials Characterization,
2014
DOI:10.1016/j.matchar.2014.10.002
|
|
|
[139]
|
Dependence of the viscosity of nanofluids on nanoparticle size and material
Physics Letters A,
2014
DOI:10.1016/j.physleta.2014.04.060
|
|
|
[140]
|
Measuring the heat-transfer coefficient of nanofluid based on copper oxide in a cylindrical channel
Technical Physics Letters,
2014
DOI:10.1134/S1063785014030067
|
|
|