[1]
|
Flowering onset time is regulated by microRNA-mediated trehalose-6-phosphate signaling in Cajanus cajan L. under elevated CO2
Physiology and Molecular Biology of Plants,
2024
DOI:10.1007/s12298-024-01434-9
|
|
|
[2]
|
Flowering onset time is regulated by microRNA-mediated trehalose-6-phosphate signaling in Cajanus cajan L. under elevated CO2
Physiology and Molecular Biology of Plants,
2024
DOI:10.1007/s12298-024-01434-9
|
|
|
[3]
|
Biosynthesis of Natural Products in Plants
2024
DOI:10.1007/978-981-97-2166-5_4
|
|
|
[4]
|
Hidden players in the regulation of secondary metabolism in tea plant: focus on non-coding RNAs
Beverage Plant Research,
2022
DOI:10.48130/BPR-2022-0019
|
|
|
[5]
|
Hidden players in the regulation of secondary metabolism in tea plant: focus on non-coding RNAs
Beverage Plant Research,
2022
DOI:10.48130/BPR-2022-0019
|
|
|
[6]
|
Understanding the role of miRNAs for improvement of tea quality and stress tolerance
Journal of Biotechnology,
2021
DOI:10.1016/j.jbiotec.2020.12.019
|
|
|
[7]
|
A Comprehensive Plant microRNA Simple Sequence Repeat Marker Database to Accelerate Genetic Improvements in Crops
Agronomy,
2021
DOI:10.3390/agronomy11112298
|
|
|
[8]
|
Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses
Physiology and Molecular Biology of Plants,
2021
DOI:10.1007/s12298-021-00925-3
|
|
|
[9]
|
A Comprehensive Plant microRNA Simple Sequence Repeat Marker Database to Accelerate Genetic Improvements in Crops
Agronomy,
2021
DOI:10.3390/agronomy11112298
|
|
|
[10]
|
Understanding the role of miRNAs for improvement of tea quality and stress tolerance
Journal of Biotechnology,
2021
DOI:10.1016/j.jbiotec.2020.12.019
|
|
|
[11]
|
Tea: Genome and Genetics
2020
DOI:10.1007/978-981-15-8868-6_1
|
|
|
[12]
|
Tea: Genome and Genetics
2020
DOI:10.1007/978-981-15-8868-6_6
|
|
|
[13]
|
Tea: Genome and Genetics
2020
DOI:10.1007/978-981-15-8868-6_8
|
|
|
[14]
|
Biotechnological Progress and Beverage Consumption
2020
DOI:10.1016/B978-0-12-816678-9.00004-7
|
|
|
[15]
|
Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions
Scientific Reports,
2020
DOI:10.1038/s41598-020-73140-x
|
|
|
[16]
|
In silico determination of transposon-derived miRNAs and targets in Aegilops species
Journal of Biomolecular Structure and Dynamics,
2020
DOI:10.1080/07391102.2019.1654409
|
|
|
[17]
|
Genome wide in-silico miRNA and target network prediction from stress responsive Horsegram (Macrotyloma uniflorum) accessions
Scientific Reports,
2020
DOI:10.1038/s41598-020-73140-x
|
|
|
[18]
|
Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis)
PLOS ONE,
2019
DOI:10.1371/journal.pone.0223609
|
|
|
[19]
|
Identification of miRNA, their targets and miPEPs in peanut (Arachis hypogaea L.)
Computational Biology and Chemistry,
2019
DOI:10.1016/j.compbiolchem.2019.107100
|
|
|
[20]
|
Tissue specific long non-coding RNAs are involved in aroma formation of black tea
Industrial Crops and Products,
2019
DOI:10.1016/j.indcrop.2019.03.020
|
|
|
[21]
|
Computational identification and characterization of conserved miRNAs and their putative target genes in Eclipta prostrata
Gene Reports,
2018
DOI:10.1016/j.genrep.2018.03.020
|
|
|
[22]
|
Identification of miRNAs and target genes regulating catechin biosynthesis in tea ( Camellia sinensis )
Journal of Integrative Agriculture,
2018
DOI:10.1016/S2095-3119(17)61654-X
|
|
|
[23]
|
Stress Physiology of Tea in the Face of Climate Change
2018
DOI:10.1007/978-981-13-2140-5_2
|
|
|
[24]
|
In Silico Identification of Conserved MiRNAs from Physcomitrella patens ESTs and their Target Characterization
Current Bioinformatics,
2018
DOI:10.2174/1574893612666170530081523
|
|
|
[25]
|
Extrapolative microRNA precursor based SSR mining from tea EST database in respect to agronomic traits
BMC Research Notes,
2017
DOI:10.1186/s13104-017-2577-x
|
|
|
[26]
|
Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress
BMC Plant Biology,
2017
DOI:10.1186/s12870-017-1172-6
|
|
|
[27]
|
Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences
BMC Plant Biology,
2017
DOI:10.1186/s12870-017-1169-1
|
|
|
[28]
|
Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.)
Scientific Reports,
2017
DOI:10.1038/s41598-017-13692-7
|
|
|
[29]
|
Functional Roles of microRNAs in Agronomically Important Plants—Potential as Targets for Crop Improvement and Protection
Frontiers in Plant Science,
2017
DOI:10.3389/fpls.2017.00378
|
|
|
[30]
|
Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi
BMC Genomics,
2017
DOI:10.1186/s12864-017-3502-3
|
|
|
[31]
|
Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.)
Scientific Reports,
2017
DOI:10.1038/s41598-017-13692-7
|
|
|
[32]
|
Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress
Physiologia Plantarum,
2016
DOI:10.1111/ppl.12477
|
|
|
[33]
|
Computational Identification, Target Prediction, and Validation of Conserved miRNAs in Insulin Plant (Costus pictus D. Don)
Applied Biochemistry and Biotechnology,
2016
DOI:10.1007/s12010-015-1891-9
|
|
|
[34]
|
Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review
Plant Cell Reports,
2016
DOI:10.1007/s00299-015-1884-8
|
|
|
[35]
|
Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress
Physiologia Plantarum,
2016
DOI:10.1111/ppl.12477
|
|
|
[36]
|
Identification and conformational analysis of putative microRNAs in Maruca vitrata (Lepidoptera: Pyralidae)
Applied & Translational Genomics,
2015
DOI:10.1016/j.atg.2015.10.003
|
|
|
[37]
|
Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)
PLOS ONE,
2015
DOI:10.1371/journal.pone.0125031
|
|
|
[38]
|
Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice
PLOS ONE,
2015
DOI:10.1371/journal.pone.0140675
|
|
|
[39]
|
Genome-wide discovery of novel and conserved microRNAs in white shrimp (Litopenaeus vannamei)
Molecular Biology Reports,
2015
DOI:10.1007/s11033-014-3740-2
|
|
|
[40]
|
Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa
Planta,
2015
DOI:10.1007/s00425-015-2255-y
|
|
|
[41]
|
In silico identification, characterization and expression analysis of miRNAs in Cannabis sativa L.
Plant Gene,
2015
DOI:10.1016/j.plgene.2015.03.003
|
|
|
[42]
|
Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database
Plant Cell, Tissue and Organ Culture (PCTOC),
2014
DOI:10.1007/s11240-014-0480-x
|
|
|
[43]
|
Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
Plant Cell Reports,
2014
DOI:10.1007/s00299-014-1589-4
|
|
|
[44]
|
Genomic resources for breeding crops with enhanced abiotic stress tolerance
Plant Breeding,
2014
DOI:10.1111/pbr.12117
|
|
|
[45]
|
Breeding and Biotechnology of Tea and its Wild Species
2014
DOI:10.1007/978-81-322-1704-6_6
|
|
|
[46]
|
Agricultural Bioinformatics
2014
DOI:10.1007/978-81-322-1880-7_9
|
|
|
[47]
|
Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis
BMC Plant Biology,
2014
DOI:10.1186/s12870-014-0271-x
|
|
|
[48]
|
Genomic resources for breeding crops with enhanced abiotic stress tolerance
Plant Breeding,
2014
DOI:10.1111/pbr.12117
|
|
|
[49]
|
Agricultural Bioinformatics
2014
DOI:10.1007/978-81-322-1880-7_9
|
|
|
[50]
|
Structural, physiological, and biochemical profiling of tea plants under zinc stress
Biologia plantarum,
2013
DOI:10.1007/s10535-012-0300-2
|
|
|
[51]
|
Structural, physiological, and biochemical profiling of tea plants under zinc stress
Biologia plantarum,
2013
DOI:10.1007/s10535-012-0300-2
|
|
|
[52]
|
Structural, physiological, and biochemical profiling of tea plants under zinc stress
Biologia plantarum,
2013
DOI:10.1007/s10535-012-0300-2
|
|
|
[53]
|
Identification of miRNAs and their targets in tea (Camellia sinensis)
Journal of Zhejiang University SCIENCE B,
2013
DOI:10.1631/jzus.B1300006
|
|
|
[54]
|
OMICS Applications in Crop Science
2013
DOI:10.1201/b16352-14
|
|
|
[55]
|
Structural, physiological, and biochemical profiling of tea plantlets under zinc stress
Biologia Plantarum,
2013
DOI:10.1007/s10535-012-0300-2
|
|
|
[56]
|
Identification of Differentially Expressed Gene Profiles in Young Roots of Tea [Camellia sinensis (L.) O. Kuntze] Subjected to Drought Stress Using Suppression Subtractive Hybridization
Plant Molecular Biology Reporter,
2012
DOI:10.1007/s11105-012-0422-x
|
|
|