[1]
|
Microbial Biomolecules
2023
DOI:10.1016/B978-0-323-99476-7.00004-1
|
|
|
[2]
|
Microbial Biomolecules
2023
DOI:10.1016/B978-0-323-99476-7.00013-2
|
|
|
[3]
|
Biotechnology of Microbial Enzymes
2023
DOI:10.1016/B978-0-443-19059-9.00021-9
|
|
|
[4]
|
Characterization of the genome and serine protease of a novel Bacillus subtilis isolate
Antonie van Leeuwenhoek,
2022
DOI:10.1007/s10482-021-01696-3
|
|
|
[5]
|
Characterization of the fruit proteolytic system of
Bromelia serra
Griseb. (Bromeliaceae) and its application in bioactive peptides release
Journal of Food Biochemistry,
2022
DOI:10.1111/jfbc.14016
|
|
|
[6]
|
Characterization of the genome and serine protease of a novel Bacillus subtilis isolate
Antonie van Leeuwenhoek,
2022
DOI:10.1007/s10482-021-01696-3
|
|
|
[7]
|
Bioactive peptides and antinutrients in chickpea: description and properties (a review)
Proceedings on applied botany, genetics and breeding,
2022
DOI:10.30901/2227-8834-2022-1-214-223
|
|
|
[8]
|
Cloning and expression of thermostable alkaline protease 50a in E. coli BL21 (DE3) and TOP10
INTERNATIONAL CONFERENCE ON BIOENGINEERING AND TECHNOLOGY (IConBET2021),
2022
DOI:10.1063/5.0078673
|
|
|
[9]
|
Physiologic, Genomic, and Electrochemical Characterization of Two Heterotrophic Marine Sediment Microbes from the Idiomarina Genus
Microorganisms,
2022
DOI:10.3390/microorganisms10061219
|
|
|
[10]
|
Recapitulating potential environmental and industrial applications of biomass wastes
Journal of Material Cycles and Waste Management,
2022
DOI:10.1007/s10163-022-01473-y
|
|
|
[11]
|
Ecological Interplays in Microbial Enzymology
Environmental and Microbial Biotechnology,
2022
DOI:10.1007/978-981-19-0155-3_2
|
|
|
[12]
|
Ecological Interplays in Microbial Enzymology
Environmental and Microbial Biotechnology,
2022
DOI:10.1007/978-981-19-0155-3_12
|
|
|
[13]
|
Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases
Applied Biochemistry and Biotechnology,
2021
DOI:10.1007/s12010-021-03701-x
|
|
|
[14]
|
Purification and Biochemical Characterization of a Novel Thermostable Serine Protease from Geobacillus sp. GS53
Applied Biochemistry and Biotechnology,
2021
DOI:10.1007/s12010-021-03512-0
|
|
|
[15]
|
Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes
Applied Biochemistry and Biotechnology,
2021
DOI:10.1007/s12010-020-03432-5
|
|
|
[16]
|
Protease Produced by Endophytic Fungi: A Systematic Review
Molecules,
2021
DOI:10.3390/molecules26227062
|
|
|
[17]
|
Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases
Applied Biochemistry and Biotechnology,
2021
DOI:10.1007/s12010-021-03701-x
|
|
|
[18]
|
Biochemical Characterization and Functional Analysis of Heat Stable High Potential Protease of Bacillus amyloliquefaciens Strain HM48 from Soils of Dachigam National Park in Kashmir Himalaya
Biomolecules,
2021
DOI:10.3390/biom11010117
|
|
|
[19]
|
Purification and Biochemical Characterization of a Novel Thermostable Serine Protease from Geobacillus sp. GS53
Applied Biochemistry and Biotechnology,
2021
DOI:10.1007/s12010-021-03512-0
|
|
|
[20]
|
Bioprospecting of Plant Biodiversity for Industrial Molecules
2021
DOI:10.1002/9781119718017.ch6
|
|
|
[21]
|
Alkaline protease production by halophilic Bacillus sp. strain SP II-4 and characterization with special reference to contact lens cleansing
Materials Today: Proceedings,
2021
DOI:10.1016/j.matpr.2020.08.624
|
|
|
[22]
|
Extraction of protease from Aspergillus tamarii URM 4634 in aqueous two-phase system under continuous and discontinuous process
Preparative Biochemistry & Biotechnology,
2020
DOI:10.1080/10826068.2020.1712658
|
|
|
[23]
|
Data mining of metagenomes to find novel enzymes: a non-computationally intensive method
3 Biotech,
2020
DOI:10.1007/s13205-019-2044-6
|
|
|
[24]
|
In Silico Study of Alkaline Serine Protease and Production Optimization in Bacillus sp. Khoz1 Closed Bacillus safensis Isolated from Honey
International Journal of Peptide Research and Therapeutics,
2020
DOI:10.1007/s10989-020-10016-8
|
|
|
[25]
|
Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach
Biocatalysis and Agricultural Biotechnology,
2020
DOI:10.1016/j.bcab.2020.101528
|
|
|
[26]
|
Laundry Detergent Compatibility and Dehairing Efficiency of Alkaline Thermostable Protease Produced from Aspergillus terreus under Solid-state Fermentation
Journal of Oleo Science,
2020
DOI:10.5650/jos.ess19315
|
|
|
[27]
|
Microbial Enzymes: Roles and Applications in Industries
Microorganisms for Sustainability,
2020
DOI:10.1007/978-981-15-1710-5_6
|
|
|
[28]
|
PARTIAL PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR METALLOPEPTIDASE PRODUCED BY Bacillus amyloliquefaciens FE-K1
Trakya University Journal of Natural Sciences,
2020
DOI:10.23902/trkjnat.647525
|
|
|
[29]
|
Industrial Enzymes for Biofuels Production
2020
DOI:10.1016/B978-0-12-821010-9.00008-5
|
|
|
[30]
|
Comparative modelling studies of fruit bromelain using molecular dynamics simulation
Journal of Molecular Modeling,
2020
DOI:10.1007/s00894-020-04398-1
|
|
|
[31]
|
Isolation and characterization of a protease from Bacillus sps
Materials Today: Proceedings,
2020
DOI:10.1016/j.matpr.2020.05.435
|
|
|
[32]
|
Colorimetric Method for the Determination of Proteins Using Immobilized Microbial Protease and a Smartphone Camera
Analytical Letters,
2020
DOI:10.1080/00032719.2020.1792477
|
|
|
[33]
|
Environmental Factors Affecting the Mineralization of Crop Residues
Agronomy,
2020
DOI:10.3390/agronomy10121951
|
|
|
[34]
|
Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers
ACS Applied Materials & Interfaces,
2019
DOI:10.1021/acsami.9b16119
|
|
|
[35]
|
Enzymes in Food Biotechnology
2019
DOI:10.1016/B978-0-12-813280-7.00015-3
|
|
|
[36]
|
Enzymes in Food Biotechnology
2019
DOI:10.1016/B978-0-12-813280-7.00014-1
|
|
|
[37]
|
Advances in Enzyme Technology
2019
DOI:10.1016/B978-0-444-64114-4.00001-7
|
|
|
[38]
|
Secreted proteases: A new insight in the pathogenesis of extraintestinal pathogenic Escherichia coli
International Journal of Medical Microbiology,
2019
DOI:10.1016/j.ijmm.2019.03.002
|
|
|
[39]
|
Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein
Electronic Journal of Biotechnology,
2019
DOI:10.1016/j.ejbt.2019.03.001
|
|
|
[40]
|
Purification and partial characterization of a thermo-halostable protease produced by Geobacillus sp. strain PLS A isolated from undersea fumaroles
Journal of Taibah University for Science,
2019
DOI:10.1080/16583655.2019.1650489
|
|
|
[41]
|
A novel thiol-dependent serine protease from Neocosmospora sp. N1
Heliyon,
2019
DOI:10.1016/j.heliyon.2019.e02246
|
|
|
[42]
|
ALKALINE PROTEASE PRODUCTION BY Bacillus licheniformis LBA 46 IN A BENCH REACTOR: EFFECT OF TEMPERATURE AND AGITATION
Brazilian Journal of Chemical Engineering,
2019
DOI:10.1590/0104-6632.20190362s20180014
|
|
|
[43]
|
Enzymatic Production, Bioactivity, and Bitterness of Chickpea (
Cicer arietinum
) Peptides
Comprehensive Reviews in Food Science and Food Safety,
2019
DOI:10.1111/1541-4337.12504
|
|
|
[44]
|
Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm, using ISAS® CASA-Morph system
Nova Biologica Reperta,
2019
DOI:10.29252/nbr.6.3.284
|
|
|
[45]
|
Protease Production from Cheotomium globusum Through Central Composite Design Using Agricultural Wastes and Its Immobilization for Industrial Exploitation
Waste and Biomass Valorization,
2019
DOI:10.1007/s12649-019-00890-9
|
|
|
[46]
|
Next generation industrial biotechnology based on extremophilic bacteria
Current Opinion in Biotechnology,
2018
DOI:10.1016/j.copbio.2017.11.016
|
|
|
[47]
|
Microbial proteases: Production and application in obtaining protein hydrolysates
Food Research International,
2018
DOI:10.1016/j.foodres.2017.10.044
|
|
|
[48]
|
An analytical method for protease activity geared towards field study
Analytical Methods,
2018
DOI:10.1039/C7AY02945D
|
|
|
[49]
|
Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells
Nature Communications,
2018
DOI:10.1038/s41467-018-06825-7
|
|
|
[50]
|
Comparative Genomics Reveals Evidence of Genome Reduction and High Extracellular Protein Degradation Potential in Kangiella
Frontiers in Microbiology,
2018
DOI:10.3389/fmicb.2018.01224
|
|
|
[51]
|
Isolation and Screening of Extracellular Protease Enzyme from Fungal Isolates of Soil
Journal of Pure and Applied Microbiology,
2018
DOI:10.22207/JPAM.12.4.42
|
|
|
[52]
|
MICROBIAL PROTEASES AND THEIR APPLICATIONS
Military Medical Science Letters,
2018
DOI:10.31482/mmsl.2018.002
|
|
|
[53]
|
Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells
Nature Communications,
2018
DOI:10.1038/s41467-018-06825-7
|
|
|
[54]
|
Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells
Nature Communications,
2018
DOI:10.1038/s41467-018-06825-7
|
|
|
[55]
|
Streptomyces sp. 12 Protease: Purification and Properties
Mikrobiolohichnyi Zhurnal,
2017
DOI:10.15407/microbiolj79.02.033
|
|
|
[56]
|
Biotechnology of Microbial Enzymes
2017
DOI:10.1016/B978-0-12-803725-6.00011-X
|
|
|
[57]
|
Impact of microbial proteases on biotechnological industries
Biotechnology and Genetic Engineering Reviews,
2017
DOI:10.1080/02648725.2017.1408256
|
|
|
[58]
|
Advances in Meat Processing Technology
Contemporary Food Engineering,
2017
DOI:10.1201/9781315371955-6
|
|
|
[59]
|
An in silico approach to understand the structure–function properties of a serine protease (Bacifrinase) from Bacillus cereus and experimental evidence to support the interaction of Bacifrinase with fibrinogen and thrombin
Journal of Biomolecular Structure and Dynamics,
2017
DOI:10.1080/07391102.2016.1158665
|
|
|
[60]
|
Marine Enzymes Biotechnology: Production and Industrial Applications, Part III - Application of Marine Enzymes
Advances in Food and Nutrition Research,
2017
DOI:10.1016/bs.afnr.2016.11.003
|
|
|
[61]
|
Effect of activators and inhibitors on extracellular thermostable alkaline protease isolated from Bacillus subtilis obtained from eastern province of Saudi Arabia
African Journal of Biotechnology,
2017
DOI:10.5897/AJB2016.15429
|
|
|
[62]
|
Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications
Applied Biochemistry and Biotechnology,
2017
DOI:10.1007/s12010-017-2427-2
|
|
|
[63]
|
Microbial alkaline proteases: Optimization of production parameters and their properties
Journal of Genetic Engineering and Biotechnology,
2017
DOI:10.1016/j.jgeb.2017.02.001
|
|
|
[64]
|
Protease production by thermo-alkaliphilic novel gut isolate Kitasatospora cheerisanensis GAP 12.4 from Gryllotalpa africana
Biocatalysis and Biotransformation,
2017
DOI:10.1080/10242422.2017.1306739
|
|
|
[65]
|
The detrimental impact of extracellular bacterial proteases on wound healing
International Wound Journal,
2017
DOI:10.1111/iwj.12790
|
|
|
[66]
|
Potential application spectrum of microbial proteases for clean and green industrial production
Energy, Ecology and Environment,
2017
DOI:10.1007/s40974-017-0076-5
|
|
|
[67]
|
Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion
Biotechnology Advances,
2017
DOI:10.1016/j.biotechadv.2017.08.004
|
|
|
[68]
|
Biology and Biotechnology of Patagonian Microorganisms
2016
DOI:10.1007/978-3-319-42801-7_11
|
|
|
[69]
|
Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2
Extremophiles,
2016
DOI:10.1007/s00792-016-0879-x
|
|
|
[70]
|
Purification and characterization of detergent stable alkaline protease fromBacillus amyloliquefaciensSP1 isolated from apple rhizosphere
Journal of Basic Microbiology,
2016
DOI:10.1002/jobm.201500341
|
|
|
[71]
|
Optimized production, characterization and application of alkaline proteases from taxonomically assessed microbial isolates from Lonar soda lake, India
Biocatalysis and Agricultural Biotechnology,
2016
DOI:10.1016/j.bcab.2016.06.002
|
|
|
[72]
|
Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum
International Journal of Food Microbiology,
2016
DOI:10.1016/j.ijfoodmicro.2016.05.030
|
|
|
[73]
|
Agro-Industrial Wastes as Feedstock for Enzyme Production
2016
DOI:10.1016/B978-0-12-802392-1.00001-0
|
|
|
[74]
|
Placenta Accreta and Placenta Increta: An Approach to Pathogenesis Based on the Trophoblastic Differentiation Pathway
Pediatric and Developmental Pathology,
2016
DOI:10.2350/15-05-1641-OA.1
|
|
|
[75]
|
Optimization of Parameters that Affect the Activity of the Alkaline Protease from Halotolerant Bacterium, Bacillus acquimaris VITP4, by the Application of Response Surface Methodology and Evaluation of the Storage Stability of the Enzyme
Iranian Journal of Biotechnology,
2016
DOI:10.15171/ijb.1269
|
|
|
[76]
|
Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein
3 Biotech,
2016
DOI:10.1007/s13205-016-0519-2
|
|
|
[77]
|
A new enzyme preparation with high penicillopepsin activity based on the producer strain Penicillium canescens
Applied Biochemistry and Microbiology,
2015
DOI:10.1134/S0003683815060162
|
|
|
[78]
|
Detergent-Compatible Proteases: Microbial Production, Properties, and Stain Removal Analysis
Preparative Biochemistry and Biotechnology,
2015
DOI:10.1080/10826068.2014.907183
|
|
|
[79]
|
Proteases of Wood Rot Fungi with Emphasis on the GenusPleurotus
BioMed Research International,
2015
DOI:10.1155/2015/290161
|
|
|
[80]
|
Solid-State Fermentation for the Concomitant Production of δ-Endotoxin and Endospore from Bacillus thuringiensis subsp. kurstaki
Advances in Bioscience and Biotechnology,
2014
DOI:10.4236/abb.2014.510093
|
|
|