[1]
|
MRI hydrodynamic characterization of an ambr15® bioreactor
Biochemical Engineering Journal,
2022
DOI:10.1016/j.bej.2021.108304
|
|
|
[2]
|
Development of a miniature bioreactor model to study the impact of
pH
and
DOT
fluctuations on
CHO
cell culture performance as a tool to understanding heterogeneity effects at large‐scale
Biotechnology Progress,
2022
DOI:10.1002/btpr.3264
|
|
|
[3]
|
Application of Ambr15 system for simulation of entire
SARS‐CoV
‐2 vaccine production process involving macrocarriers
Biotechnology Progress,
2022
DOI:10.1002/btpr.3277
|
|
|
[4]
|
Microfluidics in Biotechnology
Advances in Biochemical Engineering/Biotechnology,
2020
DOI:10.1007/10_2020_130
|
|
|
[5]
|
Animal Cell Biotechnology
Methods in Molecular Biology,
2020
DOI:10.1007/978-1-0716-0191-4_5
|
|
|
[6]
|
Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications
Chemical Reviews,
2020
DOI:10.1021/acs.chemrev.0c00451
|
|
|
[7]
|
Enhancing the functionality of a microscale bioreactor system as an industrial process development tool for mammalian perfusion culture
Biotechnology and Bioengineering,
2019
DOI:10.1002/bit.26946
|
|
|
[8]
|
A novel scale‐down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM)
Biotechnology Progress,
2019
DOI:10.1002/btpr.2832
|
|
|
[9]
|
Scale‐down model qualification of ambr® 250 high‐throughput mini‐bioreactor system for two commercial‐scale mAb processes
Biotechnology Progress,
2019
DOI:10.1002/btpr.2870
|
|
|
[10]
|
Cell Culture Engineering
2019
DOI:10.1002/9783527811410.ch13
|
|
|
[11]
|
Microbioreactor Systems for Accelerated Bioprocess Development
Biotechnology Journal,
2018
DOI:10.1002/biot.201700141
|
|
|
[12]
|
Biopharmaceutical Processing
2018
DOI:10.1016/B978-0-08-100623-8.00007-4
|
|
|
[13]
|
Transcriptome analysis for the scale-down of a CHO cell fed-batch process
Journal of Biotechnology,
2018
DOI:10.1016/j.jbiotec.2018.05.012
|
|
|
[14]
|
The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing
Trends in Biotechnology,
2018
DOI:10.1016/j.tibtech.2018.08.008
|
|
|
[15]
|
Scale-Down Model Development in ambr systems: An Industrial Perspective
Biotechnology Journal,
2018
DOI:10.1002/biot.201700766
|
|
|
[16]
|
At‐line raman spectroscopy and design of experiments for robust monitoring and control of miniature bioreactor cultures
Biotechnology Progress,
2018
DOI:10.1002/btpr.2740
|
|
|
[17]
|
Current Developments in Biotechnology and Bioengineering
2017
DOI:10.1016/B978-0-444-63663-8.00012-4
|
|
|
[18]
|
Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors
Biotechnology Progress,
2017
DOI:10.1002/btpr.2459
|
|
|
[19]
|
Applied Bioengineering
2017
DOI:10.1002/9783527800599.ch12
|
|
|
[20]
|
High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization
Biotechnology Progress,
2017
DOI:10.1002/btpr.2534
|
|
|
[21]
|
Advances in Biochemical Engineering/Biotechnology,
2017
DOI:10.1007/10_2017_20
|
|
|
[22]
|
Optimizing performance of semi-continuous cell culture in an ambr15™ microbioreactor using dynamic flux balance modeling
Biotechnology Progress,
2017
DOI:10.1002/btpr.2585
|
|
|
[23]
|
Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions
Biotechnology Progress,
2016
DOI:10.1002/btpr.2315
|
|
|
[24]
|
Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems
Biotechnology Progress,
2016
DOI:10.1002/btpr.2186
|
|
|
[25]
|
Leveraging high-throughput technology to accelerate the time to clinic: A case study of a mAb
Engineering in Life Sciences,
2016
DOI:10.1002/elsc.201500028
|
|
|
[26]
|
High-throughput purification tools for rapid upstream process development are interchangeable for biologics
Engineering in Life Sciences,
2016
DOI:10.1002/elsc.201400250
|
|
|
[27]
|
Bioreactors
2016
DOI:10.1002/9783527683369.ch4
|
|
|
[28]
|
High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation
Journal of Biotechnology,
2016
DOI:10.1016/j.jbiotec.2016.04.039
|
|
|
[29]
|
Lessons learned in building high-throughput process development capabilities
Engineering in Life Sciences,
2016
DOI:10.1002/elsc.201400254
|
|
|
[30]
|
Controlling the time evolution of mAb N-linked glycosylation, Part I: Microbioreactor experiments
Biotechnology Progress,
2016
DOI:10.1002/btpr.2305
|
|
|
[31]
|
High-throughput screening and selection of mammalian cells for enhanced protein production
Biotechnology Journal,
2016
DOI:10.1002/biot.201500579
|
|
|
[32]
|
Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development
Biotechnology Progress,
2015
DOI:10.1002/btpr.2162
|
|
|
[33]
|
The role of high-throughput mini-bioreactors in process development and process optimization for mammalian cell culture
Pharmaceutical Bioprocessing,
2015
DOI:10.4155/pbp.15.22
|
|
|
[34]
|
Development of a mathematical model for animal cell culture without pH control and its application for evaluation of clone screening outcomes in shake flask culture
Journal of Chemical Technology & Biotechnology,
2015
DOI:10.1002/jctb.4302
|
|
|
[35]
|
Pushing the limits of high-throughput chromatography process development: current state and future directions
Pharmaceutical Bioprocessing,
2015
DOI:10.4155/pbp.14.40
|
|
|
[36]
|
Cell therapies: why scale matters
Pharmaceutical Bioprocessing,
2015
DOI:10.4155/pbp.14.63
|
|
|
[37]
|
Integration of cell line and process development to overcome the challenge of a difficult to express protein
Biotechnology Progress,
2015
DOI:10.1002/btpr.2091
|
|
|
[38]
|
Cell line development for biomanufacturing processes: recent advances and an outlook
Biotechnology Letters,
2015
DOI:10.1007/s10529-015-1843-z
|
|
|
[39]
|
High-throughput screening and automation approaches for the development of recombinant therapeutic proteins
Pharmaceutical Bioprocessing,
2015
DOI:10.4155/pbp.15.18
|
|
|
[40]
|
Animal Cell Culture
Cell Engineering,
2015
DOI:10.1007/978-3-319-10320-4_5
|
|
|
[41]
|
Modulation of mAb quality attributes using microliter scale fed-batch cultures
Biotechnology Progress,
2014
DOI:10.1002/btpr.1921
|
|
|
[42]
|
High-throughput miniaturized bioreactors for cell culture process development: Reproducibility, scalability, and control
Biotechnology Progress,
2014
DOI:10.1002/btpr.1874
|
|
|
[43]
|
Are automated disposable small-scale reactors set to dominate the future of pharmaceutical bioprocess development?
Pharmaceutical Bioprocessing,
2014
DOI:10.4155/pbp.13.62
|
|
|
[44]
|
Challenges in industrial fermentation technology research
Biotechnology Journal,
2014
DOI:10.1002/biot.201300236
|
|
|
[45]
|
Automated disposable small scale reactor for high throughput bioprocess development: A proof of concept study
Biotechnology and Bioengineering,
2013
DOI:10.1002/bit.24978
|
|
|