Using “Enhanced Quantization” to Bound the Cosmological Constant, and Computing Quantum Number n for Production of 100 Relic Mini Black Holes in a Spherical Region of Emergent Space-Time

HTML  XML Download Download as PDF (Size: 416KB)  PP. 549-566  
DOI: 10.4236/jhepgc.2018.43033    484 Downloads   1,023 Views  Citations

ABSTRACT

We are looking at comparison of two action integrals and we identify the Lagrangian multiplier as setting up a constraint equation (on cosmological expansion). This is a direct result of the fourth equation of our manuscript which unconventionally compares the action integral of General relativity with the second derived action integral, which then permits Equation (5), which is a bound on the Cosmological constant. What we have done is to replace the Hamber Quantum gravity reference-based action integral with a result from John Klauder’s “Enhanced Quantization”. In doing so, with Padamabhan’s treatment of the inflaton, we then initiate an explicit bound upon the cosmological constant. The other approximation is to use the inflaton results and conflate them with John Klauder’s Action principle for a way, if we have the idea of a potential well, generalized by Klauder, with a wall of space time in the Pre Planckian-regime to ask what bounds the Cosmological constant prior to inflation, and to get an upper bound on the mass of a graviton. We conclude with a redo of a multiverse version of the Penrose cyclic conformal cosmology. Our objective is to show how a value of the rest mass of the heavy graviton is invariant from cycle to cycle. All this is possible due to Equation (4). And we compare all these with results of Reference [1] in the conclusion, while showing its relevance to early universe production of black holes, and the volume of space producing 100 black holes of value about 10^2 times Planck Mass. Initially evaluated in a space-time of about 10^3 Planck length, in spherical length, we assume a starting entropy of about 1000 initially.

Share and Cite:

Beckwith, A. (2018) Using “Enhanced Quantization” to Bound the Cosmological Constant, and Computing Quantum Number n for Production of 100 Relic Mini Black Holes in a Spherical Region of Emergent Space-Time. Journal of High Energy Physics, Gravitation and Cosmology, 4, 549-566. doi: 10.4236/jhepgc.2018.43033.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.