Non-Perturbative Guiding Center and Stochastic Gyrocenter Transformations: Gyro-Phase Is the Kaluza-Klein 5th Dimension also for Reconciling General Relativity with Quantum Mechanics

HTML  XML Download Download as PDF (Size: 827KB)  PP. 701-752  
DOI: 10.4236/jmp.2018.94048    732 Downloads   1,633 Views  Citations
Author(s)

ABSTRACT

The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle and the guiding particle solutions, both in gyro-kinetic as in MHD orderings. Moreover, the presence of a gravitational field is also considered. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism by geometry, if applied to the extended phase space. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of a magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model. Electrodynamics becomes non local, without the inconsistency of self-energy. Finally, the gyrocenter transformation is considered in the presence of stochastic e.m. fluctuations for explaining quantum behaviors via Nelson’s approach. The gyrocenter law of motion is the Schrödinger equation.

Share and Cite:

Troia, C. (2018) Non-Perturbative Guiding Center and Stochastic Gyrocenter Transformations: Gyro-Phase Is the Kaluza-Klein 5th Dimension also for Reconciling General Relativity with Quantum Mechanics. Journal of Modern Physics, 9, 701-752. doi: 10.4236/jmp.2018.94048.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.