Poor-Soil Rhizosphere Enriched with Different Microbial Activities Influence the Availability of Base Elements

HTML  XML Download Download as PDF (Size: 1336KB)  PP. 495-502  
DOI: 10.4236/oje.2017.78033    1,120 Downloads   2,321 Views  Citations
Author(s)

ABSTRACT

Understanding the ecology of soil rhizosphere is essential to enhancing soil ecosystem and plants productivity. Poor-soil properties can limit rhizosphere microbial composition, interactions and plants productivity. Furthermore, the presence of plant exudates and microbial interation can change the rhizosphere dynamic. In the current study, we used two types of soils, rich nutrient soil represented by potting-soil and poor-soil represented with nutrient-deprived poor-soil. The two types of soil were inoculated with five microbial combinations using plant growth promoting bacteria (PGPB, Pseudomonas fluorescens) and mycorrhiza, and planted with two-day-old sorghum bicolor and Setaria italica (Foxtail millet) seedlings. Soil elements analyses were conducted 60 days after planting. The availability of exchangeable base alkali elements (Ca, Mg, Na) were measured and compared. Na was exclusively affected by PGPB inoculation in both soil types. Ca and Mg increased highest when associated with arbuscular inoculation, exclusively, in comparison to association with PGPB or Ectomycorrhiza in both soil types when planted with sorghum. Whereas, the same elements Ca and Mg, increased highest when associated with arbuscular mycorrhiza inoculation whether combined with PGPB or ectomycorrhiza when in soil planted with Setaria italica. The mycorrhiza increased Ca and Mg availability when combined with PGPB. Naincrease was associated only with PGPB inoculation solely in both soil types. The use of arbuscular mycorrhiza inoculation combined with PGPB is ecofriendly method to enrich rhizosphere in poor-soil and eliminate the need to use any chemical fertilizers.

Share and Cite:

Dhawi, F. and Hess, A. (2017) Poor-Soil Rhizosphere Enriched with Different Microbial Activities Influence the Availability of Base Elements. Open Journal of Ecology, 7, 495-502. doi: 10.4236/oje.2017.78033.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.