Non-Linear Electrodynamics Gedanken Experiment for Modified Zero Point Energy and Planck’s “Constant”, h Bar, in the Beginning of Cosmological Expansion, So h(Today) = h(Initial). Also How to Link Gravity, Quantum Mechanics, and E and M through Initial Entropy Production in the Early Universe

HTML  XML Download Download as PDF (Size: 387KB)  PP. 168-182  
DOI: 10.4236/jhepgc.2016.22016    2,588 Downloads   4,067 Views  Citations
Author(s)

ABSTRACT

We initially look at a nonsingular universe representation of entropy, based in part on what is brought up by Muller and Lousto. This is a gateway to bring up information and computational steps (as defined by Seth Lloyd) as to what will be available initially due to a modified Zero Point Energy formalism. The Zero Point Energy formalism is modified as due to Vissers’s setting of an angular plane number in early universe cosmology as k(maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. This will be in the spirit of Stoica’s removal of initial conditions of non-pathological initial starting points in Cosmology. What we want are necessary and sufficient conditions so h(today) = h(initial). We also in addition make a brief survey into 5th force arguments in gravity which also has a strict entropy interpretation. i.e., how to link gravity, quantum mechanics, and E and M through entropy production.

Share and Cite:

Beckwith, A. (2016) Non-Linear Electrodynamics Gedanken Experiment for Modified Zero Point Energy and Planck’s “Constant”, h Bar, in the Beginning of Cosmological Expansion, So h(Today) = h(Initial). Also How to Link Gravity, Quantum Mechanics, and E and M through Initial Entropy Production in the Early Universe. Journal of High Energy Physics, Gravitation and Cosmology, 2, 168-182. doi: 10.4236/jhepgc.2016.22016.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.