Self-Organization and Coherency in Biology and Medicine

HTML  XML Download Download as PDF (Size: 2762KB)  PP. 119-146  
DOI: 10.4236/ojbiphy.2014.44014    4,175 Downloads   6,611 Views  Citations

ABSTRACT

Self-organization has proven to be a universal functioning property inherent to the open systems, including biological entities and living organisms. The flux of energy or matter through the system enables its transition to a new ordered state, which results from a cooperative behavior of the system’s constituents. The system functions far from thermodynamic equilibrium and its transitions between the states are treated within nonlinear models. An analysis of such behavior yields valuable information about the emergent properties of the particular system that is often impossible to obtain by other methods. This review summarizes some of the most interesting, recently reported phenomena related to dynamic self-organization and coherency at various complexity levels in living matter, demonstrating the widespread applications of these concepts in many modern fields of biological and healthcare research. The processes and interactions controlling self-organized behaviors are discussed in regards to molecular reactions, including mechanisms of protein folding, bioenergetics, and charge transfer. Phenomena in cells and tissues, as well as the examples of whole organs and organism levels are also reviewed. In addition, we analyze existing applications of self-organization and coherency processes in medicine. Special attention is given to determination of feedback mechanisms, control parameters, and order parameters needed to completely define the self-organized behavior and coherent dynamics of a particular system.

Share and Cite:

Goushcha, A. , Hushcha, T. , Christophorov, L. and Goldsby, M. (2014) Self-Organization and Coherency in Biology and Medicine. Open Journal of Biophysics, 4, 119-146. doi: 10.4236/ojbiphy.2014.44014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.