An Efficient Electric Charge Transfer Device for Intelligent Storage Units

HTML  Download Download as PDF (Size: 4127KB)  PP. 50-63  
DOI: 10.4236/ojee.2014.33006    3,088 Downloads   3,990 Views  Citations

ABSTRACT

This paper deals with a dynamic analysis of an optimal technique used for direct electrical energy storage, where a concept of charge transfer between different electric storage units is used. This analysis is developed to seek for efficient and real time conditions to maintain optimal behavior for charge recovery from intermittent power sources in the field of renewable energies like solar and wind. The proposed analysis leads to elaborating a set of interesting states and conditions that allows the user to choose effective configuration parameters that lead to an optimal or near optimal charge transfer device. The proposed device is designed to ensure an optimal transfer of electric charges. It must be self-configured to retrieve and transfer the maximum energy from the sources to the storage units (Super-capacitors, batteries…). Some interesting results, by simulating the proposed device, are presented to show how this optimization problem can be viewed as a combinatorial one, where the optimization algorithm is asked to find the suitable switching combination to configure the device to be closest to the optimal charge recovery.

Share and Cite:

Rebbani, A. , Bouattane, O. , Bahatti, L. and Zazoui, M. (2014) An Efficient Electric Charge Transfer Device for Intelligent Storage Units. Open Journal of Energy Efficiency, 3, 50-63. doi: 10.4236/ojee.2014.33006.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.