Optimization of Photocatalytic Degradation of Phenol Using Simple Photocatalytic Reactor

HTML  Download Download as PDF (Size: 3303KB)  PP. 743-750  
DOI: 10.4236/ajac.2014.511083    55,649 Downloads   57,478 Views  Citations

ABSTRACT

The phenol photocatalytic degradation was investigated using heterogeneous catalyst Ag-doped ZnO nanowires under UV irradiation. Ag-ZnO nanowires were immobilized on borosilicate glass via a simple hydrothermal technique. Preliminary photodegradation studies were performed with Ag-ZnO nanowires at various concentrations of phenol (10 - 60 mg/L) at undiluted pH. After determination of the optimal initial concentration (30 mg/L), additional parameters including pH and light intensity were investigated to optimize photodegradation of phenol for large-scale application. The experimental results illustrate that the kinetics of degradation of phenol are pseudo-first order. Based on the relationship, experimental model and empirical correlation were generated and compared for validity. The experimental data were found to fit a cubic model (linear in UV irradiation intensity, I, and cubic in pH), over ranges of 10 - 60 W (UV lamp power) and 2.7 - 11.0 (pH) with a coefficient of determination (R2) of 0.9934. This model, of the form K(I, pH) = c00 + c10I + c01pH + c11IpH + c02pH2 + c12IpH2 + c03pH3 was found to yield a better fit than simpler (quadratic) or more complex (quartic) polynomial-based models considered. The model parameters cij and corresponding 95% confidence intervals were obtained.

Share and Cite:

Udom, I. , Myers, P. , Ram, M. , Hepp, A. , Archibong, E. , Stefanakos, E. and Goswami, D. (2014) Optimization of Photocatalytic Degradation of Phenol Using Simple Photocatalytic Reactor. American Journal of Analytical Chemistry, 5, 743-750. doi: 10.4236/ajac.2014.511083.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.