An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

HTML  Download Download as PDF (Size: 3515KB)  PP. 373-385  
DOI: 10.4236/ojg.2014.48029    5,098 Downloads   6,777 Views  Citations

ABSTRACT

Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types are characterized by a compacted fabric and cemented framework. But distribution and dominance of diagenetic products in each of them depend on primary depositional composition and texture. The results show that reservoir rock typing based on three aspects of reservoir sandstones (depositional properties, diagenetic features and petrophysical characteristics) is a suitable technique for depiction of reservoir heterogeneity, recognition of reservoir units and identifying factors controlling reservoir quality of tight sandstones. This methodology can be used for the other tight reservoirs.

Share and Cite:

Ilkhchi, R. , Rezaee, R. , Harami, R. , Friis, H. and Ilkhchi, A. (2014) An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia. Open Journal of Geology, 4, 373-385. doi: 10.4236/ojg.2014.48029.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.