Charge Transfer Mechanism and Spatial Density Correlation of Electronic States of Excited Zinc (3d9) Films

HTML  Download Download as PDF (Size: 1857KB)  PP. 44-51  
DOI: 10.4236/ojpc.2014.42007    3,851 Downloads   5,481 Views  Citations

ABSTRACT

In material science, half filled 3d orbital of transition metals is essentially an important factor controlling characteristics of alloys and compounds. This paper presents a result of the challenge of excitation of inner-core electron system with long lifetime of zinc films. The advanced zinc films with excited inner-core electron, 3dn (n = 9, 8). We report experimental results of XPS measurements of 9 points in the sample along vertical direction, respectively. The most pronounced futures are existence of satellites, which are about 4 eV higher than the main lines. According to the charge transfer mechanism proposed by A. Kotani and K. Okada, it was clarified that the origins of these peaks are c3d9L for the main peak and c3d9 for the satellite, respectively. From the energy difference, δEB, and peak intensity ratio, I+/I-, between c3d9 and c3d10L, the energy for charge transfer, Δ, and mixing energy, T, were estimated. In the region where the intensity of c3d10L becomes large, Δ becomes small, 1.2 < Δ< 2.7, and T becomes small, too, 0.1 < T < 0.9, respectively. In this calculation, we supposed Udc = 5.5 eV and Udd = 5.5 eV. In the analysis along vertical direction, intensity profile of Zn3d9 showed odd functional symmetry and that of Zn3d10L showed even functional symmetry. Only the intensity profile of C1s (288 eV) showed the same spatial correlation with Zn3d9. In our experiment, the sample also showed high mobility of the constituting elements. These suggest that charge conservation in excited zinc atom suggests combination between Zn3d9 and C2-.

Share and Cite:

Chen, L. , Hamasaki, M. , Manaka, H. and Obara, K. (2014) Charge Transfer Mechanism and Spatial Density Correlation of Electronic States of Excited Zinc (3d9) Films. Open Journal of Physical Chemistry, 4, 44-51. doi: 10.4236/ojpc.2014.42007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.