Application of Electrochemical Supercapacitor to Photovoltaic System on Unmanned Flying Machine

HTML  XML Download Download as PDF (Size: 441KB)  PP. 77-87  
DOI: 10.4236/sgre.2014.54008    4,250 Downloads   6,189 Views  Citations

ABSTRACT

This paper presents an analysis of the characteristics of the photovoltaic supercapacitor system that moving fixedly along the longitude. A lot of equations concerning the characteristics are considered including supercapacitor, direct motor, solar radiation from the sun to the photovoltaic module through the atmosphere. Runge-Kutta method is used to predict the time integrations, and Newton-Raphson method ensures the simultaneous solutions at each substeps. The machine flying takes one day trip or one year trip from different latitudes and different seasons. Around solar noon, the photovoltaic generator drives the direct current motor and charges the electrochemical supercapacitor simultaneously. An electrochemical supercapacitor battery is used as a secondary battery. The working ranges of electrochemical supercapacitor battery and direct current motor are found by the simultaneous solution of their characteristics. The thermostat system induces the excess currents and supplies heat energy to keep the photovoltaic module supercapacitor not below the ice point. This study shows the considerable benefits of the supercapacitor used for energy storage, and also finds a performance in which the presented photovoltaic supercapacitor system can continue working for about three and one half years on the trips from the equator and from the latitude of 30? and about four and one half years on the trip from the latitude of 60?.

Share and Cite:

Lee, S. and Herlambang, Y. (2014) Application of Electrochemical Supercapacitor to Photovoltaic System on Unmanned Flying Machine. Smart Grid and Renewable Energy, 5, 77-87. doi: 10.4236/sgre.2014.54008.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.