A Practical Method to Evaluate and Verify Dose Calculation Algorithms in the Treatment Planning System of Radiation Therapy

HTML  Download Download as PDF (Size: 2366KB)  PP. 76-87  
DOI: 10.4236/ijmpcero.2013.23011    6,902 Downloads   13,674 Views  Citations

ABSTRACT

Purpose: To introduce a practical method of using an Electron Density Phantom (EDP) to evaluate different dose calculation algorithms for photon beams in a treatment planning system (TPS) and to commission the Anisotropic Analytical Algorithm (AAA) with inhomogeneity correction in Varian Eclipse TPS. Methods and Materials: The same EDP with various tissue-equivalent plugs (water, lung exhale, lung inhale, liver, breast, muscle, adipose, dense bone, trabecular bone) used to calibrate the computed tomography (CT) simulator was adopted to evaluate different dose calculation algorithms in a TPS by measuring the actual dose delivered to the EDP. The treatment plans with a 6-Megavolt (MV) single field of 20 × 20, 10 × 10, and 4 × 4 cm2 field sizes were created based on the CT images of the EDP. A dose of 200 cGy was prescribed to the exhale-lung insert. Dose calculations were performed with AAA with inhomogeneity correction, Pencil Beam Convolution (PBC), and AAA without inhomogeneity correction. The plans were delivered and the actual doses were measured using radiation dosimetry devices MapCheck, EDR2-film, and ionization chamber respectively. Measured doses were compared with the calculated doses from the treatment plans. Results: The calculated dose using the AAA with inhomogeneity correction was most consistent with the measured dose. The dose discrepancy for all types of tissues covered by beam fields is at the level of 2%. The effect of AAA inhomogeneity correction for lung tissues is over 14%. Conclusions: The use of EDP and Map Check to evaluate and commission the dose calculation algorithms in a TPS is practical. In Varian Eclipse TPS, the AAA with inhomogeneity correction should be used for treatment planning especially when lung tissues are involved in a small radiation field.

Share and Cite:

L. Lu, G. Yembi-Goma, J. Wang, N. Gupta, Z. Huang, S. Lo, D. Martin and N. Mayr, "A Practical Method to Evaluate and Verify Dose Calculation Algorithms in the Treatment Planning System of Radiation Therapy," International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, Vol. 2 No. 3, 2013, pp. 76-87. doi: 10.4236/ijmpcero.2013.23011.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.