COCM: Class Based Optimized Congestion Management Protocol for Healthcare Wireless Sensor Networks

HTML  Download Download as PDF (Size: 655KB)  PP. 137-149  
DOI: 10.4236/wsn.2013.57017    4,603 Downloads   7,728 Views  Citations

ABSTRACT

Wireless Sensor Networks (WSNs) consist of numerous sensor nodes which can be used in many new emerging applications like healthcare. One of the major challenges in healthcare environments is to manage congestion, because in applications, such as medical emergencies or patients remote monitoring, transmitted data is important and critical. So it is essential in the first place to avoid congestion as much as possible and in cases when congestion avoidance is not possible, to control the congestion. In this paper, a class based congestion management protocol has been proposed for healthcare applications. We distinguish between sensitive, non-sensitive and control traffics, and service the input traffics based on their priority and quality of service requirements (QoS). The proposed protocol which is called COCM avoids congestion in the first step using multipath routing. The proposed AQM algorithm uses separate virtual queue's condition on a single physical queue to accept or drop the incoming packets. In cases where input traffic rate increases and congestion cannot be avoided, it mitigates congestion by using an optimized congestion control algorithm. This paper deals with parameters like end to end delay, packet loss, energy consumption, lifetime and fairness which are important in healthcare applications. The performance of COCM was evaluated using the OPNET simulator. Simulation results indicated that COCM achieves its goals.

Share and Cite:

A. Rezaee, M. Yaghmaee and A. Rahmani, "COCM: Class Based Optimized Congestion Management Protocol for Healthcare Wireless Sensor Networks," Wireless Sensor Network, Vol. 5 No. 7, 2013, pp. 137-149. doi: 10.4236/wsn.2013.57017.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.