Blood Chemistry, Acid-Base, Electrolyte, Blood Lactate Metabolism and Sleep at 3480 m in Mountain Marathon Runners

HTML  Download Download as PDF (Size: 265KB)  PP. 13-25  
DOI: 10.4236/jbbs.2013.31003    4,679 Downloads   7,399 Views  Citations

ABSTRACT

Altered blood chemistry, acid-base and electrolyte are suggested determinants of sleep disturbance, with frequent arousal at high altitude even in well and long-trained altitude marathon runners. In this sample of experienced altitude marathon runners with maximal aerobic power at sea level of 61.4 ± 2.7 ml/kg-1·min-1 we found that pO2 and percent of oxygen saturation (%SO2) were lower at2050 mand3480 mthan at sea level; pO2 was higher after 38 - 41 hours than after 30 - 31 hours of acclimatization at3480 m(P < 0.05). After ascentto3480 m%SO2 decreased (P < 0.003). Com- pared to sea level values, pH increased at high altitude (P < 0.05) consistent with changes in pCO2 and (P < 0.05). Nocturnal %SpaO2 at a sleeping altitude of3480 mwas lower (P < 0.05) than at sea level. At high altitude, the percent of wake (W) time and delay falling asleep (DFA) increased, whereas non-rapid eye movement sleep (N-REM), REM sleep and total sleep time (TST) decreased (P < 0.05). Simple regression analysis disclosed a significant correlation between the changes in TST and the percent of REM sleep and the changes in %SpaO2 recorded during sleep (P < 0.05). Simple regression analysis showed a positive correlation between the changes in pO2 at higher altitude and the percent of W and of TST (P < 0.05). The changes in pO2, tCO2 and [HCO3-] correlated negatively and significantly with the percent of REM sleep changes at high altitude (P < 0.05). The TST changes at high altitude correlated positively with the changes in pO2 and pH and correlated negatively with the changes in %SO2, pCO2, tCO2, and [HCO3-] (P < 0.05). The changes in the percent of W at high altitude correlated significantly and positively with the changes in bases excess [BE] at high altitude (P < 0.05). The changes in the percent of REM sleep correlated significantly and positively with the changes in [iCa++] and [BE] and negatively with the changes in buffered bases [BB] and [BEeffective] (P < 0.05). The change in the percent of NREM + REM sleep at high altitude correlated significantly and positively with the changes in [BE] and [BB] concentration (P < 0.05). The increase in DFA at high altitude correlated significantly and negatively with the changes in pCO2 and significantly and negatively with the changes in [K+] (P < 0.05). Simple regression analysis demonstrated that the changes in pH at high altitude correlated positively and significantly with the percent of W and the DFA and negatively with the percent of changes in NREM sleep, REM sleep, NREM + REM sleep (P < 0.05). The decrease in the TST at high altitude correlated significantly and negatively with the changes in pCO2, tCO2, [HCO3-] and [K+] (P < 0.05). Our data demonstrate that the arterialized ear lobe techniques we used for evaluating most of the changes in blood chemistry, acid-base, electrolyte and blood lactate metabolism aresuitable for clinical and laboratory assessment and are important predictors of the quality and quantity of acclimatization and sleep at high altitude.

Share and Cite:

I. Gritti, C. Mauri, S. Defendi, D. Cesana, F. Consonni, A. Dolci and S. Luoni, "Blood Chemistry, Acid-Base, Electrolyte, Blood Lactate Metabolism and Sleep at 3480 m in Mountain Marathon Runners," Journal of Behavioral and Brain Science, Vol. 3 No. 1, 2013, pp. 13-25. doi: 10.4236/jbbs.2013.31003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.