Share This Article:

Machinability Study of Al-5Cu-TiB2 In-situ Metal Matrix Composites Fabricated by Flux-assisted Synthesis

Full-Text HTML Download Download as PDF (Size:351KB) PP. 1243-1254
DOI: 10.4236/jmmce.2011.1013097    3,062 Downloads   4,869 Views Citations
Author(s)

ABSTRACT

In-situ composites are multiphase materials where the reinforcing phase is synthesized by a chemical reaction. The reinforcement generated by this route is very small in size and homogeneously distributed in the matrix. Adoption of the engineering application of this material requires a systematic study of machinability characteristics. This work is an attempt to understand the machinability behavior of the Al-5Cu-TiB2 in-situ metal matrix composites fabricated by Flux-assisted Synthesis. The focus of this study is to investigate the effect of the cutting speed and feed rate on flank wear, cutting force, and surface roughness. The contribution of this paper is to study the influence of in-situ-formed TiB2 reinforcement on the machinability of Al-5Cu alloy. It was found that the increase in cutting speed increased the flank wear, reduced the cutting force, and minimized the surface roughness. Increase in the feed rate increased the flank wear, cutting force, and surface roughness. A higher reinforcement ratio increased the tool wear, reduced the cutting force, and increased the surface roughness. These findings can provide suitable machining parameters in turning of Al-5Cu-TiB2 in-situ metal matrix composites.

Cite this paper

A. Mahamani, "Machinability Study of Al-5Cu-TiB2 In-situ Metal Matrix Composites Fabricated by Flux-assisted Synthesis," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 13, 2011, pp. 1243-1254. doi: 10.4236/jmmce.2011.1013097.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.