s-serif;">

Ph.D., Shanghai Jiao Tong University, China

M.S., Guangxi University, China

B.S., Shanxi Institute of Education, China


Publications (Selected) 

  1. Y.Song, Y.Han, Y.Peng, Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays,Neurocomputing 121 (2013) 442-452.
  2. J. Jiang, Y.Song, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback,Applied Mathematical Modelling, 37 (2013) 8091-8105.
  3. R.Yang, Y.Peng, Y.Song, Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control, Nonlinear Dynamics 73 (2013) 737-749.
  4. Y.Song, J.Jiang, Steady-state, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback. International Journal of Bifurcation and Chaos 22 ( 2012 ) 12502861-125028631.
  5. Y.Song, J. Xu, Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system. IEEE Transactions on Neural Networks 23 (2012) 1659-1670.
  6. Y.Song, Spatio-temporal patterns of Hopf bifurcating periodic oscillations in a pair of identical tri-neuron network loops.Communications in Nonlinear Science and Numerical Simulation 17(2) (2012) 943-952.
  7. Y. Han, Y.Song, Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays. Nonlinear Dynamics69 (2012) 357-370.
  8. Y.Song, J. Xu, Tonghua Zhang.Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling. Chaos 21(2) (2011) 023111.
  9. Y.Song, Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators. Nonlinear Dynamics 63 (2011) 223-237.
  10. S. Yuan,  Y.Song, Junhui Li, Oscillations in a plasmid turbidostat model with delayed feedback control, Discrete and Continuous Dynamical Systems Series B 15 (2011) 893-914.
  11. Y.Song, T.H. Zhang, M.O. Tade, Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling, Journal of Nonlinear Science 19 (2009) 597-632.
  12. Y.Song, M.O. Tade, T.H. Zhang, Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling,Nonlinearity 22 (2009) 975-1001.
  13. Y.Song, M.O. Tade, and T.H. Zhang, Stabilization and algorithm of integrator plusdead-time process using PID controller,Journal of Process Control 19 (2009) 1529-1537.
  14. Y.Song, V.A. Makarov, and M.G. Velarde, Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks, Biological Cybernetics 101 (2009) 147-167.
  15. Y.Song, J.J. Wei, Y. Yuan, Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators, Journal of Nonlinear Science 17 (2007) 145-166.
  16. Y.Song, S.L. Yuan, Bifurcation analysis in a predator-prey system with time delay, Nonlinear Analysis-Real World Applications 7 (2006) 265-284.
  17. Y.Song, J.J. Wei, Y. Yuan, Bifurcation analysis on a survival red blood cells model, Journal of Mathematical Analysis and Applications 316 (2006) 459-471.
  18. Y.Song, M.A. Han, J.J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D-Nonlinear Phenomena 200 (2005) 185-204.