-
Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B. and Ahmad, B.B., (2020) Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Science of The Total Environment, p.134979. (IF: 5.589)
-
Rahmati, O., Choubin, B., Fathabadi, A., Coulon, F., Soltani, E., Shahabi, H., Mollaefar, E., Tiefenbacher, J., Cipullo, S., Ahmad, B.B. and Bui, D.T., (2019) Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and uneec methods. Science of The Total Environment, 688, pp.855-866. (IF: 5.589)
-
Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., Shirzadi, A., Shahabi, H., Panahi, S. and Costache, R., (2019) Flood susceptibility mapping in dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of environmental management, 247, pp.712-729. (IF: 4.865)
-
Tien Bui, D., Shirzadi, A., Chapi, K., Shahabi, H., Pradhan, B., Pham, B.T., Singh, V.P., Chen, W., Khosravi, K., Bin Ahmad, B. and Lee, S., (2019) A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water, 11(10), p.2013. (IF: 2.524)
-
Tien Bui, D., Shirzadi, A., Shahabi, H., Geertsema, M., Omidvar, E., Clague, J.J., Thai Pham, B., Dou, J., Talebpour Asl, D., Bin Ahmad, B. and Lee, S., (2019) New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 10(9), p.743. (IF: 2.116)
-
Pham, B.T., Shirzadi, A., Shahabi, H., Omidvar, E., Singh, S.K., Sahana, M., Asl, D.T., Ahmad, B.B., Quoc, N.K. and Lee, S., (2019) Landslide susceptibility assessment by novel hybrid machine learning algorithms. Sustainability, 11(16), p.4386, 575, pp. 864-873 (IF: 2.592)
-
Chen, W., Hong, H., Li, S., Shahabi, H., Wang, Y., Wang, X. and Ahmad, B.B., (2019) Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, pp. 864-873 (IF: 4.405)
-
Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A.M., Pradhan, B., Chapi, K. and Shirzadi, A., (2019) SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers. (IF: 4.160)
-
Chen, W., Hong, H., Panahi, M., Shahabi, H., Wang, Y., Shirzadi, A., Pirasteh, S., Alesheikh, A.A., Khosravi, K., Panahi, S. and Rezaie, F., (2019) Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences, 9(18), p.3755. (IF: 2.217)
-
Mohamad, N., Khanan, A., Faisal, M., Ahmad, A., Din, M., Hassan, A. and Shahabi, H., (2019) Evaluating Water Level Changes at Different Tidal Phases Using UAV Photogrammetry and GNSS Vertical Data. Sensors, 19(17), p.3778. (IF: 3.031)
-
Lee, S., Panahi, M., Pourghasemi, H.R., Shahabi, H., Alizadeh, M., Shirzadi, A., Khosravi, K., Melesse, A.M., Yekrangnia, M., Rezaie, F. and Moeini, H., (2019) Sevucas: A novel gis-based machine learning software for seismic vulnerability assessment. Applied Sciences, 9(17), p.3495. (IF: 2.217)
-
Nguyen, P.T., Tuyen, T.T., Shirzadi, A., Pham, B.T., Shahabi, H., Omidvar, E., Amini, A., Entezami, H., Prakash, I., Phong, T.V. and Vu, T.B., (2019) Development of a novel hybrid intelligence approach for landslide spatial prediction. Applied Sciences, 9(14), p.2824. (IF: 2.217)
-
Tien Bui, D., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J.F., M Melesse, A., Thai Pham, B., Pourghasemi, H.R., Mahmoudi, M., Bahrami, S. and Pradhan, B., (2019) Flood spatial modeling in northern Iran using remote sensing and gis: A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing, 11(13), p.1589. (IF: 4.118)
-
Tien Bui, D., Shirzadi, A., Shahabi, H., Chapi, K., Omidavr, E., Pham, B.T., Talebpour Asl, D., Khaledian, H., Pradhan, B., Panahi, M. and Bin Ahmad, B., (2019) A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 19(11), p.2444. (IF: 3.031)
-
Tien Bui, D., Shahabi, H., Omidvar, E., Shirzadi, A., Geertsema, M., Clague, J.J., Khosravi, K., Pradhan, B., Pham, B.T., Chapi, K. and Barati, Z., (2019) Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sensing, 11(8), p.931. (IF: 4.118)
-
Shirzadi, A., Solaimani, K., Roshan, M.H., Kavian, A., Chapi, K., Shahabi, H., Keesstra, S., Ahmad, B.B. and Bui, D.T., (2019) Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 178, pp.172-188. (IF: 3.256)
-
Khabat Khosravi, Himan Shahabi, Binh Thai Pham, Jan Adamawoski, Ataollah Shirzadi, Biswajeet Pradhan, Jie Dou, Hai-Bang Ly, Gyula Gróf, Huu Loc Ho, Haoyuan Hong, Kamran Chapi, Indra Prakash (2019) A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods, Journal of Hydrology, 573: 311-323. (IF: 3.727)
-
Taheri, K., Shahabi, H., Chapi, K., Shirzadi, A., Gutiérrez, F., Khosravi, K., (2019) Sinkhole susceptibility mapping: A comparison between Bayes‐based machine learning algorithms. Land Degradation & Development, Doi.org/10.1002/ldr.3255 (IF: 7.27)
-
Jaafari, A., Zenner, E.K., Panahi, M. and Shahabi, H., (2019). Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 266, pp.198-207, (IF: 4.039)
-
He, Q., Shahabi, H., Shirzadi, A., Li, S., Chen, W., Wang, N., Chai, H., Bian, H., Ma, J., Chen, Y. and Wang, X., (2019). Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of the Total Environment, 663: 1-15, (IF: 4.900)