Dr. Lukasz
Kurgan
University of
Alberta, Canada
Associate
Professor
Email: lkurgan@ece.ualberta.ca
Qualifications
2000–2003
Ph.D., Department of Computer Science, University of Colorado at Boulder, USA
1999–2000
Ph. D. candidate, University of Toledo, USA
1994–1999
M.Sc., AGH University of Science
and Technology, Poland, Computer Science and Electrical Engineering
Publications (Selected)
-
Kurgan LA,
Razib AA, Aghakhani S, Dick S, Mizianty M, Jahandideh S, 2009. CRYSTALP2:
Sequence-based Protein Crystallization Propensity Prediction. BMC Structural
Biology, 9:50
-
Chen K,
Kurgan LA, 2009. Investigation of Atomic Level Patterns in Protein - Small
Ligand Interactions. PLoS 3. ONE, 4(2):e4473 Zhang H, Zhang T,
Chen K, Shen S, Ruan J, Kurgan LA, 2009. On the Relation between Residue
Flexibility and Local Solvent Accessibility in Proteins. Proteins: Structure,
Function, and Bioinformatics, 76(3):617-636
-
Jiang Y,
Iglinski P, Kurgan LA, 2009. Prediction of Protein Folding Rates from Primary
Sequences using Hybrid Sequence Representation. Journal of Computational
Chemistry,30(5):772-783
-
Chen K,
Jiang Y, Du L, Kurgan LA, 2009. Prediction of Integral Membrane Protein Type by
Collocated Hydrophobic Amino Acid Pairs. Journal of Computational Chemistry, 30(1):163-172
-
Gehrke AS,
Sun S, Kurgan LA, Ahn N, Resing K, Kafadar K, Cios KJ, 2008. Improved Machine
Learning Method for Analysis of Gas Phase Chemistry of Peptides. BMC
Bioinformatics,9:515
-
Zheng C,
Kurgan LA, 2008. Prediction of ß-turns at Over 80% Accuracy Based on an
Ensemble of Predicted Secondary Structures and Multiple Alignments. BMC
Bioinformatics, 9:430
-
Zhang T, Zhang
H, Chen K, Shen S, Ruan J, Kurgan LA, 2008. Accurate Sequence-based Prediction
of Catalytic Residues. Bioinformatics, 24(20):2329-2338
-
Ruan J, Chen
H, Kurgan LA, Chen K, Kang C, Pu P, 2008. HuMiTar: A sequence-based Method for
Prediction of Human microRNA Targets. Algorithms for Molecular Biology, 3:16
-
Zhang H, Zhang
T, Chen K, Shen S, Ruan J, Kurgan LA, 2008. Sequence Based Residue Depth
Prediction Using Evolutionary Information and Predicted Secondary Structure.
BMC Bioinformatics, 9:388
-
Chen K, Huzil
T, Friedman H, Ramachandran P, Antoniou A, Tuszynski J, Kurgan LA, 2008.
Identification of Tubulin Drug Binding Sites and Prediction of Relative
Differences in Binding Affinities to Tubulin Isotypes Using Digital Signal
Processing. Journal of Molecular Graphics and Modelling, 27(4):497-505
-
Kurgan LA,
Cios KJ, Zhang H, Zhang T, Chen K, Shen S, Ruan J, 2008. Sequence-based Methods
for Real Value Predictions of Protein Structure. Current Bioinformatics, 3(3):183-196
-
Campbell K,
Kurgan LA, 2008. Sequence-only Based Prediction of ß-turn Location and Type
Using Collocation of Amino Acid Pairs. Open Bioinformatics Journal, 2:37-49
-
Kurgan LA,
Cios KJ, Chen K, 2008. SCPRED: Accurate Prediction of Protein Structural Class
for Sequences of Twilight-zone Similarity with Predicting Sequences. BMC
Bioinformatics,9:226
-
Farhangfar A,
Kurgan LA, Dy J, 2008. Impact of Imputation of Missing Values on Classification
Error for Discrete Data. Pattern Recognition, 41(12):3692-3705
-
Chen K,
Kurgan M, Kurgan LA, 2008. Sequence Based Prediction of Relative Solvent
Accessibility Using Two-stage Support Vector Regression with Confidence Values.
Journal of Biomedical Science and Engineering, 1(1):1-9
-
Kurgan LA,
Zhang T, Zhang H, Shen S, Ruan J, 2008. Secondary Structure Based Assignment of
the Protein Structural Classes. Amino Acids, 35(3):551-564
-
Kedarisetti K,
Dick S, Kurgan LA, 2008. Searching for Factors that Distinguish Disease-prone
and Disease-resistant Prions via Sequence Analysis. Bioinformatics and Biology
Insights,2:133-144
-
Golmohammadi SK,
Kurgan LA, Crowley B, Reformat M, 2008. Amino Acid Sequence Based Method for
Prediction of Cell Membrane Protein Types. International Journal of Hybrid
Information Technology, 1(1):95-109
-
Bass SD,
Kurgan LA, 2008. Discovery of Factors Influencing Patent Value Based on Machine
Learning in Patents in the Field of Nanotechnology. Scientometrics, accepted
-
Chen K,
Kurgan LA, Ruan J, 2008. Prediction of Protein Structural Class Using Novel Evolutionary
Collocation Based Sequence Representation. Journal of Computational
Chemistry,29(10):1596-1604
-
Kurgan LA,
2008. On the Relation between the Predicted Secondary Structure and the Protein
Size. Protein Journal, 24(4):234-239 Stach W, Kurgan LA, Pedrycz W, 2008.
Numerical and Linguistic Prediction of Time Series with the Use of Fuzzy
Cognitive Maps. IEEE Transactions on Fuzzy Systems, 16(1):61-72
-
Rak R,
Kurgan LA, Reformat M, 2008. A Tree-projection-based Algorithm for Multi-label
Recurrent-item Associative-Classification Rule Generation. Data and Knowledge
Engineering,64(1):171-197
-
Chen K,
Kurgan LA, 2007. PFRES: Protein Fold Classification by Using Evolutionary
Information and Predicted Secondary Structure. Bioinformatics, 23(21):2843-2850
-
Chen K,
Kurgan LA, Ruan J, 2007. Prediction of Flexible/Rigid Regions in Proteins from
Sequences Using Collocated Amino Acid Pairs. BMC Structural Biology, 7:25
-
Kurgan LA,
Chen K, 2007. Prediction of Protein Structural Class for the Twilight Zone Sequences.
Biochemical and Biophysical Research Communications, 357(2):453-460
-
Rak R,
Kurgan LA, Reformat M, 2007. xGENIA: A comprehensive OWL ontology based on the
GENIA corpus. Bioinformation, 1(9):360-362
-
Homaeian L,
Kurgan LA, Cios KJ, Ruan J, Chen K, 2007. Prediction of Protein Secondary
Structure Content for the Twilight Zone Sequences. Proteins: Structure,
Function, and Bioinformatics, 69(3):486-498
-
Chen K,
Kurgan LA, Rahbari M, 2007. Prediction of Protein Crystallization Using
Collocation of AA pairs. Biochemical and Biophysical Research Communications, 355(3):764-769
-
Huzil T,
Chen K, Kurgan LA, Tuszynski J, 2007. The Roles of Beta-Tubulin Mutations and
Isotype Expression in Acquired Drug Resistance. Cancer Informatics, 3:159-181
-
Rak R,
Kurgan LA, Reformat M, 2007. Multilabel Associative Classification
Categorization of MEDLINE Articles into MeSH Keywords. IEEE Engineering in
Medicine and Biology Magazine,special issue on Machine Learning in the Life
Sciences, 26(2):47-55
-
Kurgan LA,
Stach W, Ruan J, 2007. Novel Scales Based on Hydrophobicity Indices for
Secondary Protein Structure. Journal of Theoretical Biology, 248(2):354-366
Farhangfar A, Kurgan LA, Pedrycz W, 2007. A Novel Framework for Imputation of
Missing Values in Databases. IEEE Transactions on Systems, Man, and
Cybernetics, Part A, 37(5):692-709
-
Kurgan LA,
Kedarisetti K, 2006. Sequence Representation and Prediction of Protein
Secondary Structure for Structural Motifs in Twilight Zone Proteins. Protein
Journal, 25(7-8):463-474
-
Kedarisetti K,
Kurgan LA, Dick S, 2006. Classifier Ensembles for Protein Structural Class
Prediction with Varying Homology. Biochemical and Biophysical Research
Communications,348(3):981-988
-
Kedarisetti K,
Kurgan LA, Dick S, 2006. A Comment on 'Prediction of protein structural classes
by a new measure of information discrepancy'. Computational Biology and
Chemistry,30(5):393-394
-
Ruan J,
Chen K, Tuszynski J, Kurgan LA, 2006. Quantitative Analysis of the Conservation
of the Tertiary Structure of Protein Segments. Protein Journal, 25(5):301-315
-
Chen K,
Ruan J, Kurgan LA, 2006. Prediction of Three Dimensional Structure of
Calmodulin. Protein Journal, 40. 25(1):57-70
-
Kurgan LA,
Homaeian L, 2006. Prediction of Structural Classes for Protein Sequences and
Domains - Impact of Prediction Algorithms, Sequence Representation and
Homology, and Test Procedures on Accuracy. Pattern Recognition, special
issue on Bioinformatics, 39(12):2323-2343
-
Swiercz W,
Cios KJ, Staley K, Kurgan LA, Accurso F, Sagel S, 2006. A New Synaptic
Plasticity Rule for Networks of Spiking Neurons. IEEE Transactions on Neural
Networks, 17(1):94-105
-
Kurgan LA,
Musilek P, 2006. A Survey of Knowledge Discovery and Data Mining Process Models.
Knowledge Engineering Review, 21(1):1-24
-
Kurgan LA,
Cios KJ, Dick S, 2006. Highly Scalable and Robust Rule Learner: Performance
Evaluation and Comparison. IEEE Transactions on Systems, Man, and Cybernetics,
Part B,36(1):32-53
-
Ruan J,
Wang K, Yang J, Kurgan LA, Cios KJ, 2005. Highly Accurate and Consistent Method
for Prediction of Helix and Strand Content from Primary Protein Sequences.
Artificial Intelligence in Medicine, special issue on Computational
Intelligence Techniques in Bioinformatics, 35(1-2):19-35
-
Stach W,
Kurgan LA, Pedrycz W, Reformat M, 2005. Genetic Learning of Fuzzy Cognitive
Maps. Fuzzy Sets and Systems, 153(3):371-401
-
Stach W,
Kurgan LA, Pedrycz W, Reformat M, 2004. Learning Fuzzy Cognitive Maps with
Required Precision using Genetic Algorithm Approach. Electronics Letters, 40(24):1519-1520
-
Kurgan LA,
Cios KJ, 2004. CAIM Discretization Algorithm. IEEE Transactions on Data and
Knowledge Engineering, 16(2):145-153
-
Cios KJ,
Kurgan LA, 2004. CLIP4: Hybrid Inductive Machine Learning Algorithm that
Generates Inequality Rules. Information Sciences, special issue on Soft
Computing Data Mining, 163(1-3):37-83
-
Kurgan LA,
Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS, 2001. Knowledge Discovery
Approach to Automated Cardiac SPECT Diagnosis. Artificial Intelligence in
Medicine,23(2):149-169
-
Cios K,
Pedrycz W, Swiniarski R, Kurgan LA, 2007. Data Mining: A Knowledge Discovery
Approach, Springer, ISBN 0-387-33333-9, 700 pages
-
Wani A, Chen
X, Casasent D, Kurgan LA, Hu T, Hafeez K, (Eds.) 2008. Proceedings of the
Seventh International Conference on Machine Learning and Applications
(ICMLA'08), IEEE Press, ISBN 978-0-7695-3495-4, 905 pages
-
Wani A,
Kantardzic M, Li T, Liu Y, Kurgan LA, Ye J, Ogihara M, Sagiroglu S, Chen X,
Peterson L, Hafeez K, (Eds.) 2007. Proceedings of the Sixth International
Conference on Machine Learning and Applications (ICMLA'07), IEEE Press, ISBN
0-7695-3069-9, 638 pages
-
Kurgan LA,
Reformat M, Cios KJ, (Eds.) 2007. Editorial for special issue on Machine
Learning in the Life Sciences, IEEE Engineering in Medicine and Biology
Magazine, IEEE Press
-
Reformat M,
Kurgan LA, (Eds.) 2007. Proceedings of the Human Centric Computing and Data
Processing (HC2DP 2007) Symposium 25 pages
-
Wani A, Li T,
Kurgan LA, Ye J, Liu J, (Eds.) 2006. Proceedings of the Fifth International
Conference on Machine Learning and Applications (ICMLA'06), IEEE Press, ISBN
0-7695-2735-3, 303 pages
-
Musilek P,
Reformat M, Kurgan LA, (Eds.) 2005. Editorial for special issue on Biologically
Inspired Computing and Computers in Biology, Neural Networks World
-
Wani A,
Milanowa M, Kurgan LA, Reformat M, Hafeez K, (Eds.) 2005. Proceedings of the
Fourth International Conference on Machine Learning and Applications
(ICMLA'05), IEEE Press, ISBN 0-7695-2495-8, 412 pages
-
Dick S,
Kurgan LA, Musilek P, Pedrycz W, Reformat M, (Eds.) 2004. Proceedings of the
2004 North American Fuzzy Information Proceesing Society (NAFIPS'04) Conference,
IEEE Press, ISBN 0-7803-8376-1, 1024 pages
-
Kurgan LA,
Musilek P, Pedrycz W, Reformat M, (Eds.) 2005. Proceedings of the Human Centric
Computing (HC2 2005) Symposium 71 pages
Profile
Details
http://biomine.ece.ualberta.ca/