Home > AJCM>
Biography


Prof. Stanislaw Migorski
Jagiellonian University in Krakow, Poland


Email: stanislaw.migorski@uj.edu.pl


Qualifications

Ph.D., Institute of Mathematics, Jagiellonian University, Poland
M.S., Institute of Computer Science, Jagiellonian University, Poland


Publications(Selected)

  1. Z. Denkowski, S. Migorski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003, pages: 683, ISBN: 0-306-47392-5.
  2. Z. Denkowski, S. Migorski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003, pages: 822, ISBN: 0-306-47456-5.
  3. S. Migorski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Springer Science, 2012, in press.
  4. S. Migorski, A. Ochal, M. Sofonea, Analysis of lumped models with contact and friction, Zeitschrift fuer angewandte Mathematik und Physik, 62(1) (2011), 99-113.
  5. S. Migorski, A. Ochal and M. Sofonea, Analysis of Frictional Contact Problem for Viscoelastic Materials with Long Memory, Discrete and Continuous Dynamical Systems, Series B, 15 (2011), 687-705.
  6. B. Barabasz, S. Migorski, R. Schaefer, M. Paszynski, Multi Deme, Twin Adaptive Strategy hp-HGS, Inverse Problems in Science and Engineering, 19(1) (2011), 3-16.
  7. Z. Denkowski, S. Migorski and A. Ochal, A Class of Optimal Control Problems for Piezoelectric Frictional Contact Models, Nonlinear Analysis: Real World Applications, 12 (2011) 1883–1895.
  8. S. Migorski, A. Ochal and M. Sofonea, Analysis of a Quasistatic Contact Problem for Piezoelectric Materials, Journal of Mathematical Analysis and Applications, 382 (2011), 701-713.
  9. S. Migorski, A. Ochal, M. Sofonea, History-Dependent Subdifferential Inclusions and Hemivariational Inequalities in Contact Mechanics, Nonlinear Analysis Real World Applications, 12 (2011), 3384-3396.
  10. S. Migorski, Existence of Solutions to Nonlinear Second Order Evolution Inclusions without and with Impulses, Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 18 (2011), 493--520.
  11. S. Migorski, A. Ochal, M. Sofonea, Variational Analysis of Fully Coupled Electro-Elastic Frictional Contact Problems, Mathematische Nachrichten, 283 (9) (2010), 1314-1335.
  12. S. Migorski, A. Ochal, M. Sofonea, A dynamic frictional contact problem for piezoelectric materials, Journal of Mathematical Analysis and Applications, 361 (2010), 161-176.
  13. S. Migorski, A. Ochal, M. Sofonea, Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Analysis Real World Applications, 11 (2010), 172-183.
  14. S. Migorski, A. Ochal, An inverse coefficient problem for a parabolic hemivariational inequality, Applicable Analysis, 89 (2010), 243-256.
  15. S. Migórski, A. Ochal, Nonconvex Inequality Models for Contact Problems of Nonsmooth Mechanics, Keynote Lecture in the Minisymposium on Computational Contact Mechanics, Chapter 3 in Lectures of the CMM 2009 , “Computer Methods in Mechanics”, Advanced Structured Materials, Book Series, M. Kuczma, K. Wilmanski (Eds.), Vol. 1, 43-58, Springer, Berlin, Heidelberg, 2010.
  16. S. Migorski, A. Ochal, M. Sofonea, Analysis of a dynamic contact problem for electroviscoelastic cylinders, Nonlinear Analysis Theory, Methods and Applications, 73(5) (2010), 1221-1238.
  17. S. Migorski, Evolution Hemivariational Inequalities with Applications,in: Handbook of Nonconvex Analysis and Applications, Chapter 8, D. Y. Gao and D. Motreanu (eds.), International Press, Boston, 2010, 409-473.


Profile Details

Null