Home > JHEPGC>
Biography


Alexander Burinskii

Laboratory of Theoretical Physics

Nuclear Safety Institute of the Russian Academy of Sciences


Email: bur@ibrae.ac.ru


Qualifications

2003 Doctor of Science in Physics and Mathematics

1968 Ph.D. in technical sciences

1964-1968 graduate school at MIPT (State University)

1957-1963 Moscow Institute of Physics and Technology (State University)

1947-1957 Moscow school


Publications (selected)

The most recent publications on the Kerr geometry and the structure of regularized electron model:

  1. A. Burinskii, Spinning particle as Kerrs black hole: to the problem of unification of gravity with particle physics, International Journal of Modern Physics A (IJMPA), Vol. 35, Nos. 2 & 3 2040009 (2020).
  2. A. Burinskii, Kerr-Newman black hole as spinning particle, Journ. of Phys.: Conf. Ser. 1435 012053 (2020).
  3. A. Burinskii, Weakness of gravity as illusion which hides true path to unification of gravity with particle physics, International Journal of Modern Physics D, Vol. 26, No. 12, 1743022 (2017).
  4. A. Burinskii, Source of the Kerr-Newman solution as a supersymmetric domain-wall bubble: 50 years of the problem, Phys Lett. B, 754, 99 (2016).
  5. A. Burinskii, Gravitating lepton bag model, JETP (Zh.Eksp.Teor.Fiz.) 148,228 (2015).
  6. A. Burinskii, Stability of the lepton bag model based on the Kerr-Newman solution, JETP (Zh.Eksp.Teor.Fiz.) 148 (11), 937 (2015).
  7. A. Burinskii, Emergence of the Dirac Equation in the Solitonic Source of the Kerr Spinning Particle, Gravitation and Cosmology, Vol. 21 (1), 28 (2015), arXiv:1404.5947.
  8. A. Burinskii, Kerr-Newman electron as spinning soliton, Int J. of Mod. Phys. A Vol. 29 (2014) 1450133.
  9. A. Burinskii, Regularized Kerr-Newman Solution as a Gravitating Soliton, J. Phys. A: Math. Theor. 43 (2010) 392001.
  10. A. Burinskii, Gravity vs. Quantum theory: Is electron really pointlike? Proceedings of the conference QTS7 (Prague). J. Phys.: Conf. Ser. 343: 012019 (2012), arXiv:1112.0225.


The most earliest publications on the string structures of the Kerr geometry:

  1. A. Burinskii, Microgeons with spin, Journal of Experimental and Theoretical Physics, vol. 39, no. 2, p. 193, 1974.
  2. D. Ivanenko and A. Burinskii, Gravitational strings in models for elementary particles, Soviet Physics Journal, Vol. 18, Issue 5, p. 721 (1975), In Russian: Izv. VUZ. Fiz., vol. 5, p. 135, (1975).


The most important publications on the Kerr theorem and twistorial structure of space-time:

  1. A. Burinskii, Wonderful consequences of the Kerr theorem, Grav. Cosmol. 11, 301(2005), arXiv: hep-th/0506006.
  2. A. Burinskii, The Kerr theorem and multiparticle Kerr-Schild solutions. Int. Journ. Geom. Meth. Mod. Phys. 4, 437 (2007), arXiv: hep-th/05102.
  3. A. Burinskii, Twistor-beam excitations of Black-Holes and prequantum Kerr-Schild geometry, Theoretical and Mathematical Physics, vol. 163, no. 3, pp. 782-787, 2010.
  4. A. Burinskii, Fluctuating Twistor-Beam Solutions and Holographic Pre-Quantum Kerr-Schild Geometry, J. Phys. Conf. Ser. 222:012044, 2010.


Selected publications on the string-like and twistorial structures of the real and complex Kerr geometry: alalysis, application and (super)generalization:

  1. A. Burinskii, String-like structures in complex Kerr geometry, in Relativity Today, R. P. Kerr and Z. Perj´es, Eds., p. 149, Akad´emiai Kiad´o, Budapest, Hungary, 1994, arxiv: gr-qc/9303003.
  2. A. Burinskii, The Kerr geometry, complex world lines and hyperbolic strings, Physics Letters A, vol. 185, no. 5-6, pp. 441445, 1994.
  3. A. Burinskii, Some properties of the Kerr solution to low energy string theory, Physical Review D, vol. 52, no. 10, pp.58265831, 1995.
  4. A. Burinskii, Kerr spinning particle, strings, and superparticle models, Physical Review D, vol. 57, no. 4, pp. 23922396, 1998.
  5. A. Burinskii, Twistorial analyticity and three stringy systems of the Kerr spinning particle, Physical Review D, vol. 70, no. 8, Article ID 086006, 2004.
  6. A. Burinskii, The Dirac-Kerr-Newman electron, Gravitation and Cosmology, vol. 14, no. 2, pp. 109122, 2008.
  7. A. Burinskii and R. P. Kerr, Nonstationary Kerr congruences, arxiv: gr-qc/9501012.
  8. A. Burinskii, Complex Kerr geometry and nonstationary Kerr solutions, Physical Review D, vol. 67, .p. 11, 2003.
  9. A. Burinskii and G. Magli, Kerr-Schild approach to the boosted Kerr solutions, Phys. Rev. D 61 044017 (2000).
  10. A. Burinskii, Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold, Adv. in High Energy Phys. v. 2013, paper ID 509749.
  11. A. Burinskii, Stringlike structures in Kerr-Schild geometry: The N=2 string, twistors, and Calabi-Yau twofold, Theor. Math. Phys., 177(2), 1492 -1504, (2013).
  12. A. Burinskii, Orientifold D-String in the Source of the Kerr Spinning Particle, Phys. Rev. D 68 (2003) 105004 [arXiv:hep-th/0308096].
  13. A. Burinskii, E. Elizalde, S. R. Hildebrandt and G. Magli, Rotating "Black Holes" with Holes in the Horizon,  Phys. Rev. D74 (2006) 021502, arXiv:gr-qc/0511131.
  14. A. Burinskii, E. Elizalde, S. R. Hildebrandt and G. Magli, Regular Sources of the Kerr-Schild class for Rotating and Nonrotating Black Hole Solutions, Phys. Rev. D 65: 064039 (2002), arXiv:gr-qc/0109085.
  15. A. Burinskii, E. Elizalde, S. R. Hildebrandt and G. Magli, Aligned electromagnetic excitations of a black hole and their impact on its quantum horizon, Phys. Lett. B 671:486-492 (2009), arXiv:0705.3551.
  16. A. Burinskii and S. R. Hildebrandt, New Type of Regular Black Holes and Particlelike Solutions from Nonlinear Electrodynamics, Phys. Rev. D65:104017, 2002, arXiv:hep-th/0202066.
  17. A. Burinskii and G. Magli,. Kerr-Schild Approach to the Boosted Kerr Solution, Phys.Rev. D61 (2000) 044017, arXiv:gr-qc/9904012.
  18. A. Burinskii, .The Dirac - Kerr-Newman electron, Grav. Cosmol. 14:109-122 (2008), arXiv:hep-th/0507109.
  19. A. Burinskii, Casimir Energy and Vacua vor Superconducting Ball in Supergravity, Int. J. Mod. Phys. A17 (2002) 920-925, arXiv:hep-th/0205127.
  20. A. Burinskii, The Problem of the Source of the Kerr-Newman Metric: The Volume CasimirEffect and Superdense Pseudovacuum State, Phys. Lett. B 216 (1989) 123-126, DOI: 10.1016/0370-2693(89)91380-4.
  21. A. Burinskii, Rotating Super Black Hole as Spinning Particle, Noncommutative Structures in Mathematics and Physics. Eds S. Duplij and J. Wess. Kluwer Acad. Press. NATO Sc. Series II. 22(2001)181-193, arXiv:hep-th/0011188.
  22. A. Burinskii, Super-Kerr-Newman solution to broken N = 2 supergravity, Classical and Quantum Gravity 16, 3497-3516, 1999, arXiv:hep-th/9903032.