Practical Study for the Effect of Speed, Direction of Acceleration and Type of Machine on Vibrations Transferred to the Steering Wheel Horticulture Tractor Type (Goldoni)

HTML  XML Download Download as PDF (Size: 894KB)  PP. 48-58  
DOI: 10.4236/eng.2019.111005    702 Downloads   1,486 Views  Citations

ABSTRACT

Field an experiment was carried out in the farms of Agriculture and forestry academy at University in Nineveh. The research was conducted to investigate a practical study for the effect of four forward speeds (1.9, 2.6, 3.8 and 4.7 km/hr.) and three acceleration direction of axes lateral, longitudinal and vertical, and two types machines control (Mower and Rotovators) on the vibrations transferred to the steering wheel horticulture tractor type (Goldoni). The vibration points on the handgrip were calculated and tested. Root mean square acceleration (RMS), given in m/sec2, was calculated. Results showed increased acceleration vibration of the three directions (longitudinal, lateral and vertical) transferred to the steering wheel tractor by increased forward speed. The Mower score recorded the highest acceleration vibration for the three directions of Rotovators. The levels of vibration emitted from tractor to hand an operator during the experiment was high comparing with standard mechanical vibration. Handgrip vibration intensity in the vertical direction is bigger than the lateral and longitudinal direction. The total vibration evaluating was denoted as the square root mean of the three sum value (lateral, longitudinal and vertical) directions. The paper purpose was measuring and analyzing vibration level transferred to the steering wheel and reduces the machine vibration. This paper is helpful for design in order to increase the develop safety systems in easy and economical way.

Share and Cite:

Dahham, G. , Muhamed, S. and Saleh, S. (2019) Practical Study for the Effect of Speed, Direction of Acceleration and Type of Machine on Vibrations Transferred to the Steering Wheel Horticulture Tractor Type (Goldoni). Engineering, 11, 48-58. doi: 10.4236/eng.2019.111005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.