Study and Analysis of the Orbital and Physical Properties of 2010 TK7
Gianamar Giovannetti-Singh
DOI: 10.4236/jmp.2011.211167   PDF    HTML   XML   4,724 Downloads   9,387 Views   Citations


In this paper we calculate the volume, mass, gravitational attraction to the Earth, angular momentum the orbit of the Trojan asteroid (TK7) [1]. In this paper, we use classical Newtonian mechanics to analyse some of the physical and orbital properties of the Trojan asteroid, which are still experimentally unknown. The asteroid should remain in Earth’s orbit for the next 100 years. We conclude by providing informed estimates of 2010 TK7’s yet unknown physical properties: i.e. mass, volume, gravitational attraction to Earth and angular momentum.

Share and Cite:

G. Giovannetti-Singh, "Study and Analysis of the Orbital and Physical Properties of 2010 TK7," Journal of Modern Physics, Vol. 2 No. 11, 2011, pp. 1351-1353. doi: 10.4236/jmp.2011.211167.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Connors, P. Wiegert and C. Veillet, “Earth’s Trojan Asteroid,” Nature, Vol. 475, 2011, pp. 481-483. doi:10.1038/nature10233
[2] V. G. Duval, W. R. Irace, A. K. Mainzer and E. L. Wright, “The Wide-Field Infrared Survey Explorer (WISE),” Proceeding of SPIE, Vol. 5487, Glasgow, 21 June 2004.
[3] JPL Small-Body Database Browser, NASA, 2010.
[4] J. L. Lagrange, “Essai sur le Problème des Trois Corps,” Oeuvres de Lagrange, Vol. 6, 1772, pp. 229-332.
[5] O. Boulade, et al., “Development of MegaCam, the Next- Generation Wide-Field Imaging Camera for the 3.6-m Canada-France-Hawaii Telescope,” Proceedings of SPIE, Vol. 4008, 2000, pp. 657-668. doi:10.1117/12.395524
[6] P. Lacerda, “A Chan ge in the Light Curve of Kuiper Belt Contact Binary,” The Astronomical Journal, Vol. 142, No. 3, 2011, p. 90. doi:10.1088/0004-6256/142/3/90
[7] J. Hietarinta and S. Mikkola, “Chaos in the One-Dimensional Gravitational Three-Body Problem,” arXiv:chao-dyn/9304001v1
[8] F. A. A. El-Salam and S. A. El-Bar, “Formulation of the Post-Newtonian Equations of Motion of the Restricted Three Body Problem,” Applied Mathematics, Vol. 2, No. 2, 2011, pp. 155-164. doi:10.4236/am.2011.22018
[9] Y. A. Abdel-Aziz, A. M. Abdel-Hameed and K. I. Khalil. “A New Navigation Force Model for the Earth’s Albedo and Its Effects on the Orbital Motion of an Artificial Satellite,” Applied Mathematics, Vol. 2, No. 7, 2011, pp. 801-807. doi:10.4236/am.2011.27107
[10] Q. X. Nie, “Comprehensive Research on the Origin of the Solar System by Quantum-like model,” International Journal of Astronomy and Astrophysics, Vol. 1, No. 2, 2011, pp. 52-61.
[11] Bucknell University. “Astronomy 101: Problem Set #10 Solutions,” 2011.
[12] I. Newton, “Philosophi? Naturalis Principia Mathematica,” Cambridge University Press, Cambridge, 1726.
[13] A. A. Christou and D. J. Asher, “A Long-Lived Horseshoe Companion to the Earth,” Monthly Notices of the Royal Astronomical Society, Vol. 414, No. 4, July 2011, pp. 2965-2969.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.