[1]
|
W. E. Pereira and C. E. Rostad, “Occurrence, Distribu- tions, and Transport of Herbicides and Their Degradation Products in the Lower Mississippi river and Its Tributary- ies,” Environmental Science & Technology, Vol. 24, 1990, pp. 1400-1406. doi:10.1021/es00079a015
|
[2]
|
S. J. Kalkhoff, K. E. Lee, S. D. Porter, P. J. Terrio and E. M. Thurman, “Herbicides and Herbicide Degradation Pro- ducts in Upper Midwest Agricultural Streams during August Base Flow Conditions,” Journal of Environmental Quality, Vol. 32, No. 3, 2003, pp. 1025-1035.
doi:10.2134/jeq2003.1025
|
[3]
|
C. A. Guzman-Perez, J. Soltan and J. Robertson, “Kinetics of Catalytic Ozonation of Atrazine in the Presence of Activated Carbon,” Separation and Purification Technology, Vol. 79, No. 1, 2011, pp. 8-14.
doi:10.1016/j.seppur.2011.02.035
|
[4]
|
V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal, A. Nayak, “Pesticides Removal from Waste Water by Activated Carbon Prepared from Waste Rubber Tire,” Water Research, Vol. 45, No. 13, 2011, pp. 4047-4055.
doi:10.1016/j.watres.2011.05.016
|
[5]
|
G.-C. Chen, X.-Q. Shen, Y.-Q. Zhou, X.-E. Shen, H.-L. Huang and S. U. Khan, “Adsorption Kinetics, Isotherms and Thermodynamics of Atrazine on Surface Oxidized Multiwalled Carbon Nanotubes,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 912-918.
doi:10.1016/j.jhazmat.2009.04.034
|
[6]
|
T. S. Jamil, T. A. Gad-Allah, H. S. Ibrahim and T. S. Saleh, “Adsorption and Isothermal Models of Atrazine by Zeolite Prepared from Egyptian Kaolin,” Solid State Sciences, Vol. 13, No. 1, 2011, pp. 198-203.
doi:10.1016/j.solidstatesciences.2010.11.014
|
[7]
|
I. K. Konstantinous, T. A. Albanis, D. E. Petrakis and P. J. Pomonis, “Removal of Herbicides from Aqueous Solutions by Adsorption on Al-Pillared Clays, Fe-Al Pillared Clays and Mesoporous Alumina Aluminum Phosphates,” Water Research, Vol. 34, No. 12, 2000, pp. 3123-3136. doi:10.1016/S0043-1354(00)00071-3
|
[8]
|
H. Chen, E. Bramanti, I. Longo, M. Onor and C. Ferrari, “Oxidative Decomposition of Atrazine in Water in the Presence of Hydrogen Peroxide Using an Innovative Mi- Crowave Photochemical Reactor,” Journal of Hazardous Materials, Vol. 186, No. 2-3, 2011, pp. 1808-1815.
doi:10.1016/j.jhazmat.2010.12.065
|
[9]
|
K. V. Plakas and A. J. Karabelas, “Triazine Retention by Nanofiltration in the Presence of Organic Matter: The Role of Humic Substance Characteristics,” Journal of Membrane Science, Vol. 336, No. 1-2, 2009, pp. 86-100.
doi:10.1016/j.memsci.2009.03.020
|
[10]
|
E. C. Wert, F. L. Rosario-Ortiz and S. A. Snyder, “Effect of Ozone Exposure on the Oxidation of Trace Organic Contaminants in Wastewater,” Water Research, Vol. 43, No. 4, 2009, pp. 1005-1014.
doi:10.1016/j.watres.2008.11.050
|
[11]
|
S. Nélieu, L. Kerhoas and J. Einhorn, “Degradation of Atrazine into Ammeline by Combined Ozone/Hydrogen Peroxide Treatment in Water,” Environmental Science & Technology, Vol. 34, No. 3, 2000. pp. 430-437.
doi:10.1021/es980540k
|
[12]
|
B. Balci, O. Nihal, C. Richard and A. O. Mehmet, “Deg- radation of Atrazine in Aqueous Medium by Electrocata- lytically Generated Hydroxyl Radicals. A Kinetic and Mechanistic Study,” Water Research, Vol. 43, No. 7, 2009. pp. 1924-1934. doi:10.1016/j.watres.2009.01.021
|
[13]
|
D. Kassinos, N. Varnava, C. Michael and P. Piera, “Ho- mogeneous Oxidation of Aqueous Solutions of Atrazine and Fenitrothion through Dark and Photo-Fenton Reactions,” Chemosphere, Vol. 74, No. 6, 2009. pp. 866-872. doi:10.1016/j.chemosphere.2008.10.008
|
[14]
|
C. Lizama-Bahena, S. Silva-Martínez, D. Morales-Guz- man and M. R. Trejo-Hernández, “Sonophotocatalytic Degradation of Alazine and Gesaprim Commercial Herbicides in TiO2 Slurry,” Chemosphere, Vol. 71, No. 5, 2008, pp. 982-989.
doi:10.1016/j.chemosphere.2007.11.007
|
[15]
|
L. Campanella and R. Vitaliano, “Atrazine Toxicity Re- duction Following H2O2/TiO2-Photocatalyzed Reaction and Comparison with H2O2-Photolytic Reaction,” Annali di Chimica, Vol. 97, No. 1-2, 2007, pp. 123-134.
doi:10.1002/adic.200690081
|
[16]
|
T. A. McMurray, P. S. M. Dunlop and J. A. Byrne, “The Photocatalytic Degradation of Atrazine on Nanoparticulate TiO2 Films,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 182, No. 1, 2006, pp. 43-51. doi:10.1016/j.jphotochem.2006.01.010
|
[17]
|
C. Lizama-Bahena and S. Silva-Martínez, “Photodegra- dation of Chlorbromuron, Atrazine, and Alachlor in Aqu- eous Systems under Solar Irradiation,” International Journal of Photoenergy, Vol. 81808, 2006, pp. 1-6.
|
[18]
|
I. Texier, J. Ouazzani, J. Delaire and C. Giannotti, “Study of the Mechanisms of the Photodegradation of Atrazine in the Presence of Two Photocatalysts: TiO2 and Na4W10O32,” Tetrahedron, Vol. 55, No. 11, 1999, pp. 3401-3412.
doi:10.1016/S0040-4020(98)01150-8
|
[19]
|
Y. Zhang, Y. Li and X. Zheng, “Removal of Atrazine by Nanoscale Zero Valent Iron Supported on Organobenton- ite,” Science of the Total Environment, Vol. 409, No. 3, 2011, pp. 625-630. doi:10.1016/j.scitotenv.2010.10.015
|
[20]
|
K. Hustert, P. N. Moza and B. Pouyet, “Photocatalytic Degradation of S-Triazines Herbicides,” Toxicological & Environmental Chemistry, Vol. 51, No. 52, 1993, pp. 96-101.
|
[21]
|
S. M. Arnold, W. J. Hickey and R. F. Harris, “Degradation of Atrazine by Fenton’s Reagent: Condition, Optimization and Product Quantification,” Environmental Science & Technology, Vol. 29, No. 8, 1995, pp. 2083- 2089. doi:10.1021/es00008a030
|
[22]
|
E. Pelizzeti, V. Maurino, C. Minero, V. Carlin, E. Pramauro, O. Zerbinati and M. L. Tosato, “Photocatalytic Degradation of Atrazine and Other S-Triazine Herbicides,” Environmental Science & Technology, Vol. 24, No. 10, 1990, pp. 1559-1565. doi:10.1021/es00080a016
|
[23]
|
I. K. Konstantinou and T. A. Albanis, “Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways,” Applied Catalysis B: Environmental, Vol. 42, No. 4, 2003, pp. 319-335.
doi:10.1016/S0926-3373(02)00266-7
|
[24]
|
V. Hequet, C. Gonzalez and P. Le-Cloirec, “Photo- Chemical Processes for Atrazine Degradation: Methodo- logical Approach,” Water Research, Vol. 35, No. 18, 2001, pp. 4253-4260.
doi:10.1016/S0043-1354(01)00166-X
|
[25]
|
G. A. Pe?uela and D. Barceló, “Comparative Photodegra- dation Study of Atrazine and Desethylatrazine in Water Samples Containing Titanium,” Journal of AOAC International, Vol. 83, No. 1, 2000, pp. 53-60.
|
[26]
|
H. Mě?t’ánková, J. Krysa, J. Jirkovsky, G. Mailhot and M. Bolte, “The influence of Fe(III) Speciation on Supported TiO2 Efficiency: Example of Monuron Photocatalytic Degradation,” Applied Catalysis B: Environmental, Vol. 58, No. 3-4, 2005, pp. 185-191.
doi:10.1016/j.apcatb.2003.09.017
|
[27]
|
K. Horst, G. Burgeth and W. Macyk, “Visible Light Photocatalysis by a Titania Transition Metal Complex,” Advances in Inorganic Chemistry, Vol. 56, 2004, pp. 241- 259. doi:10.1016/S0898-8838(04)56008-7
|
[28]
|
M. Anpo, “Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocata- lysts Able to Operate under UV-Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light,” Bulletin of the Chemical Society of Japan, Vol. 77, No. 8, 2004, pp. 1427-1442.
doi:10.1246/bcsj.77.1427
|
[29]
|
Y. Aita, M. Komatsu, S. Yin and T. Sato, “Phase-Compo- sitional Control and Visible Light Photocatalytic Activity of Nitrogen-Doped Titania via Solvothermal Process,” Journal of Solid State Chemistry, Vol. 177, No. 9, 2004, pp. 3235-3238. doi:10.1016/j.jssc.2004.04.048
|
[30]
|
M. S. Diallo and S. Nora, “Nanoparticles and water qual- ity,” Journal of Nanoparticle Research, Vol. 7, No. 4-5, 2005, pp. 325–330. doi:10.1007/s11051-005-8543-x
|
[31]
|
N. Wetchakun, P. Pirakitikulr, K. Chiang and S. Phanich- phant, “Visible Light-Active Nano-Sized Fe-Doped TiO2 Photocatalysts and Their Characterization,” 2nd IEEE International Nanoelectronics Conference, Shanghai, 2008, pp. 836-841.
|
[32]
|
Z. Ambrus, N. Balázs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi and K. Mogyorósi, “Synthesis, Structure and Photocatalytic Properties of Fe(III)-Doped TiO2 Prepared from TiCl3,” Applied Catalysis B: Environmental, Vol. 81, No. 1-2, 2008, pp. 27-37.
doi:10.1016/j.apcatb.2007.11.041
|
[33]
|
M. K. Seery, G. Reenamole, P. Floris and S. Pillai, “Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 189, No. 2-3, 2007, pp. 259-263.
doi:10.1016/j.jphotochem.2007.02.010
|
[34]
|
B. Tryba, “Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications,” International Journal of Photoenergy, Vol. 2008, 2008, pp. 1-15.
doi:10.1155/2008/721824
|
[35]
|
A. Katsambas, C. A. Varotsos, G. Veziryianni and C. Antoniou, “Surface Solar Ultraviolet Radiation: A Theoretical Approach of the SUVR Reaching the Ground in Athens, Greece,” Environmental Science and Pollution Research, Vol. 4, No. 2, 1997, pp. 69-73.
doi:10.1007/BF02986280
|
[36]
|
U. I. Gaya and H. A. Abdul, “Heterogeneous Photocata- lytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 9, No. 1, 2008, pp. 1-12.
doi:10.1016/j.jphotochemrev.2007.12.003
|