Dynamic Poverty Measures
Eugene Kouassi, Pierre Mendy, Diaraf Seck, Kern O. Kymn
DOI: 10.4236/tel.2011.13014   PDF    HTML     5,362 Downloads   10,372 Views  


In this paper one considers a general approach to construct a poverty index. In particular from a general perspective, first and second order conditions based on a general poverty intensity function are derived. Then using specific intensity functions defined by Sen, FGT and Shorrock respectively, one specifies related first and second conditions. An extension based on a large class of intensity function is also investigated.

Share and Cite:

Kouassi, E. , Mendy, P. , Seck, D. and Kymn, K. (2011) Dynamic Poverty Measures. Theoretical Economics Letters, 1, 63-69. doi: 10.4236/tel.2011.13014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. G. Ciarlet, “Introduction à l’analyse Numérique Matricielle et à l’optimisation,” Dunod, Paris, 2006.
[2] J. M. Dia and D. Popescu, “Commande Optimale, Conception Optimisée des Systèmes,” Diderot Arts et Sciences, Paris, 1996.
[3] J. S. Rustagi, “Optimization Techniques in Statistics,” AP Harcourt Brace and Company Publishers, San Diego, 1997.
[4] R. Mart, “Optimisation Intertemporelles: Application aux Modèles Macroéconomiques,” Economica, Paris 1997.
[5] M. Troutman, “Calculus of Variations with Elementary Convexity,” Springer-Verlag, New York, 1980.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.