[1]
|
J. von Neumann, “Mathematical Foundations of Quantum Me-chanics,” Springer Verlag, Berlin, 1932.
|
[2]
|
S. Ishikawa, “A Quantum Mechanical Mechanical Approach to Fuzzy Theory,” Fuzzy Sets and Systems, Vol. 90, No. 3, 1997, pp. 277-306.
doi:10.1016/S0165-0114(96)00114-5
|
[3]
|
S. Ishikawa, “Statistics in Measurements,” Fuzzy Sets and Systems, Vol. 116, No. 2, 2000, pp. 141-154.
doi:10.1016/S0165-0114(98)00280-2
|
[4]
|
S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University Press Inc., 2006, 335 Pages. http://www.keioup.co.jp/kup/mfomt/).
|
[5]
|
S. Ishikawa, “A New Formulation of Measurement Theory,” Far East Journal of Dynamical Systems, Vol. 10, No. 1, 2008, pp. 107-117.
|
[6]
|
K. Kikuchi, S. Ishikawa, “Psychological tests in measurement theory,” Far East Journal of Theoretical Statis-tics, Vol. 32, No. 1, 2010, pp. 81-99.
|
[7]
|
S. Sakai, “C*-Algebras and W*-Algebras,” Ergebnisse der Mathematik und ihrer Grenzgebiete (Band 60), Springer- Verlag, Berlin, 1971.
|
[8]
|
E.B. Davies, “Quantum Theory of Open Systems,” Academic Press, Cambridge, 1976.
|
[9]
|
A. Kolmogorov, “Foundations of Probability (Translation),” Chelsea Publishing Co., 1950.
|
[10]
|
J.S. Bell, “On the Einstein-Podolosky-Rosen Paradox,” Physics, Vol. 1, 1966, pp. 195-200.
|
[11]
|
F. Selleri, “Die Debatte um die Quantentheorie,” Friedr. Vieweg & Sohn Verlagsgesellscvhaft MBH, Braunschweig, 1983.
|
[12]
|
S. Ishi-kawa, “Uncertainty Relation in Simultaneous Measurements for Arbitrary Observables,” Reports on Mathematical Physics, Vol. 9, 1991, pp. 257-273.
doi:10.1016/0034-4877(91)90046-P
|
[13]
|
A. Einstein, B. Podolosky and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Physical Review, Vol. 47, No. 10, 1935, pp. 777-780. doi:10.1103/PhysRev.47.777
|
[14]
|
N. Bohr, “Can Quan-tum-Mechanical Description of Physical Reality Be Considered Complete?” Physical Review, Vol. 48, 1935, pp. 696-702.
doi:10.1103/PhysRev.48.696
|