[1]
|
Come, J. H., Fraser, P. E. and Lansbury, J., P. T., (1993) A ki-netic model for amyloid formation in the prion diseases: Im-portance of seeding. P. Natl. Acad. Sci. USA. 90, 5959–5963.
|
[2]
|
Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ram-poni, G. and Dobson, C. M. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Bio-chemistry. 96, 3590–3594.
|
[3]
|
Arrigo, P. A. and Muller, G. E. W. (2001) ((W. E. G. Muller (Managing Editor), P. J., I.Kostovic, Y. Kuchino, A. Macieira-coelho, R. E. Rhoads, Ed.). Ed.).
|
[4]
|
van Montfort, L. R., Slingsby, C. and Vierling, E. (2002) Struc-ture and function of the small heat shock protein/ α-crystallin family of molecular chaperones. Protein. Chem. 59, 105–155.
|
[5]
|
Serpell, C. L. a. (2000) Alzheimer's amyloid fibrils: Structure and assembly. Biochim. Biophys. Acta. 1502, 16–30.
|
[6]
|
Pellarin, R. and Caflisch, A. (2006) Interpreting the aggrega-tion kinetics of amyloid peptides. J. Mol. Biol 360, 882–892.
|
[7]
|
Hall, D., Hirota, N. and Dobson, M. C. (2005) A toy model for predicting the rate of amyloid formation from unfolded protein. J. Mol. Biol. 195, 195–205.
|
[8]
|
Dobson, M. C. (2001) The structure basis of protein folding and its links with human disease. Phil. Trans. R. Soc. Lond. B.. 356, 133–145.
|
[9]
|
Dobson, M. C. (1999) Protein misfolding, evolution and dis-ease. TIBS. 24, 329–332.
|
[10]
|
Canet, D., Sunde, M., Last, A. M., Miranker, A., Spencer, A., Robinson, C. V. and Dobson, C. M. (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloido-genic behavior in its disease-related variants. Biochemistry. 38, 6419–27.
|
[11]
|
MacPhee, E. C. and Dobson, C. M. (2000) Chemical dissection and reassembly of amyloid fibril formed by a peptide fragment of transthyretin. J. Mol. Biol. 297, 1203–1215.
|
[12]
|
Shirahama, T. and Cohens, A. S. (1967) High-resolution elec-tron microscopic. Analysis of the amyloid fibril. J. Cell. Biol.. 33, 679–708.
|
[13]
|
Chamberlain, K. A., MacPhee, E. C., Zurdo, J., Morozova-Roche, A. L., Hill, A. H., Dobson, M. C. and Davis, J. J. (2000) Ultra structural organization of amyloid fibrils by atomic force microscopy. Biophys. J.. 79, 3282–3293.
|
[14]
|
Conway, K. A. and Harper, J. D. (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry. 39, 2552–63.
|
[15]
|
Cohen, A. S., Shirahama, T. and Skinner, M. (1982) Electron microscopy of amyloid. In electron microscopy of protein. Academic Press Inc, London UK. 3, 165–205.
|
[16]
|
Jiménez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M. and Saibil, H. R. (1999) Cryo-electron micros-copy structure of an SH3 amyloid fibril and model of the mo-lecular packing. EMBO. 18, 815–821.
|
[17]
|
Serpell, L. C., Sunde, M., E., F. P., Luther, P. K., Morris, E. P., Sangren, O., Lundgren, E. and Blake, C. C. (1995) Examina-tion of the structure of the transthyretin amyloid fibril by im-age reconstruction from electron micrographs. J. Mol. Biol.. 254, 113–8.
|
[18]
|
Kirschner, A. D., Abraham, C. and Selkoe, J. D. (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in alzheimer disease indicates cross-β conformation. P. Natl. Acad. Sci. USA. 83, 503–508.
|
[19]
|
Blake, C. and Serpell, L. (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure. 4, 989–98.
|
[20]
|
Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B. and Blake, C. F. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739.
|
[21]
|
Guijarro, I. L., Sunde, M., Jones, A. J., Campbell, D. I. and Dobson, M. C. (1998) Amyloid fibril formation by an SH3 domain. Biochemistry. 95, 4224–4228.
|
[22]
|
Plakoutsi, G., Bemporad, F., Calamai, M., Taddei, N., Dobson, M. C. and Chiti, F. (2005) Evidence for a mechanism of amy-loid formation involving molecular reorganisation within na-tive-like precursor aggregates. J. Mol. Biol. 351, 910–922.
|
[23]
|
Cecchini, M., Curcio, R., Pappalardo, M., Melki, R. and Caflisch, A. (2006) A Molecular Dynamics Approach to the Structural Characterization of Amyloid Aggregation. J. Mol. Biol. 357, 1306–1321.
|
[24]
|
Hatters, D. M., Wilson, M. R., Easterbrook-Smith, S. B. and Howlett, G.J. (2002) Suppression of apolipoprotein C-II amy-loid formation by the extracellular chaperone, clusterin Eur. J. Biochem. 269, 2789–2794.
|
[25]
|
Haley, D. A., Horwitz, J. and Stewart, P. L. (1998) The small Heat-Shock protein,aB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35.
|
[26]
|
Jacchieri, G. S. (1998) Study of a-helix to b-strand to b-sheet transitions in amyloid: the role of segregated hydrophobic b-strands. Biophysical Chemistry. 74, 23–34.
|
[27]
|
Milner-White, J. E., Watson, D. J., Qi, G. and Hayward, S. (2006) Amyloid formation may involve a- to b-sheet intercon-version via peptide plane flipping. Structure. 14, 1369–1376.
|
[28]
|
Horwitz, S., Thomas, C., Gruener, G., Nand, S. and Shea, F. J. (1998) MR of Leptomeningeal Spinal and Posterior Fossa Amyloid. AJNR Am J Neuroradiol. 19, 900–902.
|
[29]
|
Horowitz, S., Thomas, C., Gruener, G., Nand, S. and Shea, F. J. (1998) MR of Leptomeningeal Spinal and Posterior Fossa Amyloid. AJNR Am J Neuroradiol. 19, 900–902.
|
[30]
|
Tycko, R. (2000) Solid-state NMR as a probe of amyloid fibril structure. Curr. Opin. Chem. Biol. 4, 500–506.
|
[31]
|
Makin, S. O., Atkins, E., Sikorski, P., Johansson, J. and Serpell, C. L. (2005) Molecular basis for amyloid fibril formation and stability. PNAS. 102, 315–320.
|
[32]
|
Otoo, N. H., Lee, G.K., Qiu, W. and Lipke, N. P. (2008) Can-dida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryotic Cell. 7, 776–782.
|
[33]
|
Religa, D., Laudon, H., Styczynska, M., Winblad, B., N?slund, J. and Haroutunian, V. (2003) Amyloid β Pathology in Alz-heimer’s Disease and Schizophrenia. Am J Psychiatry. 160, 867–872.
|
[34]
|
Barrel, J. M., Broadley, S. A., Schaffar, G. and Hart, F. U. (2004) Role of molecular chaperones in protein misfolding diseases. Semin. Cell. Dev. Biol. 15, 17–29.
|
[35]
|
Ellidson and Bottomley (2004) The role of Misfolding in the pathogenesis of human diseases. IUBMB life. 56(3), 119–123.
|
[36]
|
Carrell, R. W. and Lomas, D. A. (1997) Conformational diseas. Lancet. 350, 134–138.
|
[37]
|
Small, W. G., Kepe, V., Ercoli, M. L., Siddarth, P., Bookheimer, Y. S., Miller, J. K., Lavretsky, H., Burggren, C. A., Cole, M. G., Vinters, V. H., Thompson, M. P., Huang, C. S., Satyamurthy, N., Phelps, E. M. and Barrio, R. J. (2006) PET of brain amy-loid and Tau in mild cognitive impairment. N. Engl. J. Med. 355, 2652–2663.
|
[38]
|
Selkoe (2003) Folding proteins in fatal ways. Nature. 426(6968), 900–904.
|
[39]
|
Han, H., Weinreb, H. P. and Lansbury, T. P. (1995) The core Alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by p-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chemistry & Biology. 2, 163–l69.
|
[40]
|
Shoghi-Jadid, K., Barrio, R. J., Kepe, V., Wu, M. H., Small, W. G., Phelps, E. M. and Huang, C. S. (2005) Imaging b-amyloid fibrils in Alzheimer’s disease: a critical analysis through simu-lation of amyloid fibril polymerization. Nuclear Medicine and Biology. 32, 337–351.
|
[41]
|
Miura, Y., You, C. and Ohnishi, R. (2008) Inhibition of Alz-heimer amyloid aggregation by polyvalent trehalose. SCI-ENCE AND TECHNOLOGY OF ADVANCEDMATERIALS (Sci. Technol. Adv. Mater). 9, 1–6.
|
[42]
|
Sefton, F. C. and Yu, G. (2008) Ab Predictor of Alzheimer dis-ease symptoms Arch Neurol. 65, 875–876.
|
[43]
|
Malm, T., Ort, M., T? htivaara, L., Jukarainen, N., Goldsteins, G., Puoliv? li, J., Nurmi, A., Pussinen, R., Ahtoniemi, T., Miet-tinen, K. T., Kanninen, K., Leskinen, S., Vartiainen, N., Yrj? nheikki, J., Laatikainen, R., Harris-White, E. M., Koistinaho, M., Frautschy, A. S., Bures, J. and Koistinaho, J. (2006) b-Amyloid infusion results in delayed and age-dependent learn-ing deficits without role of inflammation or b-amyloid depos-its. PNAS 103, 8852–8857.
|
[44]
|
Grundman, M., Petersen, R. C., Ferris, H. S., Thomas, R. G., Aisen, S. P., Bennett, A. D., Foster, L. N., Jack, R. C., Galasko, R. D., Doody, R., Kaye, J., Sano, M., Mohs, R., Gauthier, S., Kim, T. H., Jin, S., Schultz, N. A., Schafer, K., Mulnard, R., Dyck, V. H. C., Mintzer, J., Zamrini, Y. E., Cahn-Weiner, D. and Thal, J. L. (2004) Mild cognitiveimpairment can be distin-guished from Alzheimer Disease and normal aging for clinical trials. Arch Neurol. 61, 59–66.
|
[45]
|
Huang, J. H. T., Yang, S. D., Plaskos, N. P., Go, S., Yip, M. C., Fraser, E. P. and Chakrabartty, A. (2000) Structural Studies of Soluble Oligomers of the Alzheimer b-Amyloid Peptide. J. Mol. Biol. 297, 73–87.
|
[46]
|
Rosenberg, N. R. (2000) Explaining the cause of the amyloid burden in Alzheimer disease. Arch Neurol. 59, 1367–1368.
|
[47]
|
Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Ohashi, R., Takegoshi, K., Nagao, M., Shimizu, T. and Shirasawa, T. (2005) Structure of B-amyloid fibrils and its relevance to their neurotoxicity: implications for the patho-genesis of Alzheimer’s disease. Journal of Bioscience and Bio-engineering. 99, 437–447.
|
[48]
|
Rivière, C., Richard, T., Quentin, L., Krisa, S., Mérillon, M. J. and Monti, P. J. (2007) Inhibitory activity of stilbenes on Alz-heimer’s b-amyloid fibrils in vitro. Bioorganic & Medicinal Chemistry. 15, 1160–1167.
|
[49]
|
Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 297, 353–356.
|
[50]
|
Sachse, C., Xu, C., Wieligmann, K., Diekmann, S., Grigorieff, N. and F?ndrich, M. (2006). Quaternary structure of a mature amyloid fibril from Alzheimer’s Aβ(1-40) peptide. J. Mol. Biol. 362, 347–354.
|
[51]
|
Ma, B. Y. and Nussinov, R. (2002) Stabilities and conforma-tions of Alzheimer’s b-amyloid peptide oligomers (Ab (16–22), Ab (16–35) and Ab (10–35)): Sequence effects. Proc. Natl Acad. Sci. USA. 99, 14126–14131.
|
[52]
|
Buchete, V. N., Tycko, R. and Hummer, G. (2005) Molecular dynamics simulations of Alzheimer’s b-Amyloid protofila-ments. J. Mol. Biol. 353, 804–821.
|
[53]
|
Jime?nez, L. J., Tennent, G., Pepys, M. and Saibil, R. H. (2001) Structural Diversity of ex vivo Amyloid Fibrils Studied by Cryo-electron Microscopy. J. Mol. Biol. 311, 241–247.
|
[54]
|
Gilead, S. and Gazit, E. (2005) Self-organization of short pep-tide fragments: From amyloid fibrils to nanoscale su-pramolecular assemblies. Supramolecular Chemistry. 17, 87–92.
|
[55]
|
Pellarin, R., Guarnera, E. and Caflisch, A. (2007) Pathways and intermediates of amyloid fibril formation. J. Mol. Biol. 374, 917–924.
|
[56]
|
Serpell, L. C. and Smith, J. M. (2000) Direct visualisation of the b-sheet structure of synthetic Alzheimer's amyloid. J. Mol. Biol. 299, 225–231.
|
[57]
|
Klement, K., Wieligmann, K., Meinhardt, J., Hortschansky, P., Richter, W. and F?ndrich, M. (2007) Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s Aβ(1-40) amyloid fibrils. J. Mol. Biol. 373, 1321–1333.
|
[58]
|
Ban, T., Hoshino, M., Takahashi, T., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. (2004) Direct observation of Ab amyloid fibril growth and inhibition. J. Mol. Biol. 344, 757–767.
|
[59]
|
Idicula-Thomas, S. and Balaji, V. P. (2007) Protein aggrega-tion: A perspective from amyloid and inclusion-body forma-tion. CURRENT SCIENCE. 92, 758–767.
|
[60]
|
Li, L., Darden, A. T., Bartolotti, L., Kominos, D. and Pedersen, G. L. (1999) An atomic model for the pleated b-sheet structure of Ab- amyloid protofilaments. Biophys J. 76, 2871–2878.
|
[61]
|
Weinreb, P. H., Jarrett, J. T. and Lansbury, P. T. (1994) Peptide models of a hydrophobic cluster at the C-terminus of the amy-loid protein. J. Am. Chem. Soc. 116, 10835–10836.
|
[62]
|
Williams, A. D., Portelius, E., Kheterpal, I., Guo, J., Cook, K. D., Xu, Y. and Wetzel, R. (2004) Mapping A-amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.
|
[63]
|
Lazo, N. D. and Downing, D. T. (1999). Fibril formation by amyloid b-proteins may involve b-helical protofibrils. J. Pept. Res., 53, 633-640.
|
[64]
|
Thusnelda, S. and Louise C, S. (2005) Structure and morphol-ogy of the Alzheimer’s amyloid fibril, Microscopy Research and Technique, 67, 210-217.
|
[65]
|
El-Agnaf, A. M. O., Mahil, S. D., Patel, P. B. and Austen, M. B. (2000) Oligomerization and Toxicity of b-Amyloid-42 Im-plicated in Alzheimer’s Disease. Biochemical and Biophysical Research Communications. 273, 1003–1007.
|
[66]
|
Grundman, M. (2000) Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am Clin Nutr. 71, 630S–636S.
|
[67]
|
Tuszynski, H. M., Thal, L., Pay, M., Salmon, P. D., Sang U, H., Bakay, R., Patel, P., Blesch, A., Vahlsing, L. H., Ho, G., Tong, G., Potkin, G. S., Fallon, J., Hansen, L., Mufson, J. L., Kor-dower, H. J., Gall, C. and Conner, J. (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer dis-ease. Nat. Med. 11, 551–555.
|
[68]
|
Martin, K. B., Meinert, L. C. and Breitner, S. C. J. (2002) Double placebo design in a prevention trial for Alzheimer's disease. Cont. Clin. Trials. 23, 93–99.
|
[69]
|
D?′az-Hernández, M., Torres-Peraza, J., Salvatori-Abarca, A., Morán, M.A., Gómez-Ramos, P., Alberch, J. and Lucas, J. J. (2005) Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a condi-tional mouse model of Huntington’s Disease. The Journal of Neuroscience. 25(42), 9773–9781.
|
[70]
|
Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wal-lace, M. R., Sakaguchi, A. Y., Young, A. B., Shoulson, I., Bonilla, E. and Martin, J. B. (1983) A polymorphic DNA marker genetically linked to Huntington; s disease. Nature. 306, 234–238.
|
[71]
|
Anderson, K. E., Louis, E. D., Stern, Y. and Marder, K. S. (2001) Cognitive Correlates of Obsessive and Compulsive Symptoms in Huntington’s Disease. Am J Psychiatry. 158, 799–801.
|
[72]
|
Mitchell, I. J., Heims, H., Neville, E.A. and Rickards, H. (2005) Huntington’s disease patients show impaired perception of disgust in the gustatory and olfactory modalities. J. Neuro-psychiatry Clin Neurosci. 17, 119–121.
|
[73]
|
Hirakura, Y., Azimov, R., Azimova, R. and Kagan, L. B. (2000) Polyglutamine-Induced Ion Channels: A Possible Mechanism for the Neurotoxicity of Huntington and Other CAG Repeat Diseases. Journal of Neuroscience Research. 60, 490–494.
|
[74]
|
Davies, W. S., Beardsall, K., Turmaine, M., DiFiglia, M., Aronin, N. and Bates, P. G. (1998) Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disor-ders with polyglutamine-repeat expansions? THE LANCET. 351, 131–33.
|
[75]
|
Temussi, A. P., Masino, L. and Pastore, A. (2003) From Alz-heimer to Huntington: why is a structural understanding so difficult? The EMBO Journal. 22, 355–361.
|
[76]
|
Karpug, V. M., Becher, W. M., Springer, E. J., Chabas, D., Youssef, S., Pedotti, R., Mitchell, D. and Steinman, L. (2002). Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat. Med. 8, 143–149.
|
[77]
|
Karpuj, V. M., Becher, W. M., Springer, E. J., Chabas, D., Youssef, S., Pedotti, R., Mitchell, D. and Steinman, L. (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nature Medicine. 8, 143–149.
|
[78]
|
Hoffner, G. and Djian, P. (2000) Protein aggregation in Hunt-ington’s disease. Biochimie. 84, 273–278.
|
[79]
|
Mcgowan, P. D., Vanroon-Mom, W., Holloway, H., Bates, P. G., Mangiarini, L., Cooper, S. J. G., R., F. L. and Snell, G. R. (2000) Amyloid-lioke inclusions in huntington, s disease. Neu-roscience. 100, 677–680.
|
[80]
|
Gutekunst, A. C., Li, H. S., Yi, H., Mulroy, S. J., Kuemmerle, S., Jones, R., Rye, D., Ferrante, J. R., Hersch, M.S. and Li, J.X. (1999) Nuclear and Neuropil Aggregates in Huntington’s Dis-ease: Relationship to Neuropathology. The Journal of Neuro-science. 19(7), 2522–2534.
|
[81]
|
Ross, A. C. (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron. 35, 819–822.
|
[82]
|
Dahlgren, R. P., Karymov, A. M., Bankston, J., Holden, T., Thumfort, P., Ingram, V. M. and Lyubchenko, L. Y. (2005) Atomic force microscopy analysis of the Huntington protein nanofibril formation. Nanomedicine: Nanotechnology, Biology and Medicine. 1, 52–57.
|
[83]
|
Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., Hasenbank, R., Bates, P.G., Lehrach, H. and Wanker, E. E. (1999) Self-assembly of polyglutamine-containing huntingtin fragment into amyloid-like fibrils: Implications for Hunting-ton’s disease pathology. Proc. Natl. Acad. Sci. USA. 96, 4604–4609.
|
[84]
|
Borlongan, C. V., Koutouzis, T. K., Freeman, T. B., Cahill, D. W. and Sanberg, P. R. (1995) Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington's disease. Brain Res. 697, 254–257.
|
[85]
|
Spillantini, G. M., Crowther, A. R., Jakes, R., Hasegawa, M. and Goedertm, M. (1998) A-synuclein in filamentous inclu-sions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA. 95, 6469–6473.
|
[86]
|
Recchia, A., Debetto, P., Negro, A., Guidolin, D., Skaper, D. S. and Giusti, P. (2004) A-Synuclein and Parkinson’s disease. The FASEB J. 18, 617–626.
|
[87]
|
Dauer, W. and Przedborski, S. (2003) Parkinson’s disease: mechanisms and models. Neuron. 39, 889–909.
|
[88]
|
Hariz, G. and Hriz, I. M. (2000) Gender distribution in surgery for Parkinson's disease. Parkinsonism Relate Disord. 6, 155–157.
|
[89]
|
Iwaki, T., Wisniewski, T., Iwaki, A., Corbin, E., Tomokane, N., Tateishi, J. and Goldman, J. E. (1992) Accumulation of aB-crystallin in central nervous system glia and neurons in patho-logic conditions. Am. J. Path. 140, 345–356.
|
[90]
|
Serpell, C. L., Berriman, J., Jakes, R., Goedert, M. and Crow-ther, A. R. (2000) Fiber diffraction of synthetic a-synuclein filaments shows amyloid-like cross-b conformation. PNAS. 97, 4897-4902.
|
[91]
|
Mizutani, T., Inose, T., Nakajima, S., Kakimi, S., Uchigata, M. and Ikeda, K. (1998) Familial parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative strocytic fibrillary tangles, and Lewy bodies.. Acta Neuropathol. (Berl). 95, 15–27.
|
[92]
|
Sasaki, K., Doh-ura, K., Wakisaka, Y. and Iwaki, T. (2002) Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies. Acta Neuropathol. (Berl). 104, 225–230.
|
[93]
|
McLean, P. J., Kawamata, H., Shariff, S., Hewett, J., Sharma, N. and Ueda, K. (2002) Torsin A and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggrega-tion. J. Neuro. 83, 846–854.
|
[94]
|
Splllantini, G. M. a., Crowther, A. R., JAKES, R., Cairns, J. N., Lantos, L. P. and Goedert, M. (1998) Filamentous a-synuclein inclusions link multiple system atrophy with Parkinson’s dis-ease and dementia with Lewy bodies. Neuroscience. 251, 205–208.
|
[95]
|
El-Agnaf, A. M. O., Jakes, R., Curran, D. M. and Wallace, A. (1998) E?ects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of K-synuclein protein implicated in Parkinson's disease. FEBS. 440, 67–70.
|
[96]
|
Spillantini, G. M. a., Crowther, A. R., JAKES, R., Cairns, J. N., Lantos, L. P. and Goedert, M. (1998) Filamentous a-synuclein inclusions link multiple system atrophy with Parkinson’s dis-ease and dementia with Lewy bodies. Neuroscience. 251, 205–208.
|
[97]
|
El-Agnaf, A. M. O., JAKES, R., Curran, D. M., Middleton, D., Ingenito, R., Bianchi, E., Pessi, A., Neill, D. and Wallace, A. (1998) Aggregates from mutant and wild-type a-synuclein proteins and NAC peptide induce apoptotic cell death in hu-man neuroblastoma cells by formation of L-sheet and amyloid-like ¢laments. FEBS. 440, 71–75.
|
[98]
|
Arima, K., Hirai, S., Sunohara, N., Aoto, K., Izumiyama, Y., Ue′da, K., Ikeda, K. and Kawai, M. (1999) Cellular co-localization of phosphorylated tau- and NACPr a-synuclein-epitopes in Lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Research. 843, 53–61.
|
[99]
|
Arima, K., Ue′da, K., Sunohara, N., Hirai, S., Izumiyama, Y., Tonozuka-Uehara, H. and Kawai, M. (1998) Immunoelectron-microscopic demonstration of NACPra-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Research. 808, 93–100.
|
[100]
|
Conway, A. K., Lee, J. S., Rochet, C. J., Ding, T. T., William-son, E. R. and Lansbury, T. P. (2000) Acceleration of oli-gomerization, not fibrillization, is a shared property of both a-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. PNAS. 97, 571–576.
|
[101]
|
Conway, A. K., Harper, J. D. and Lansbury, P. T. (2000) Fibrils Formed in Vitro from R-Synuclein and Two Mutant Forms Linked to Parkinson’s Disease are Typical Amyloid. Biochem. 39, 2552–2563.
|
[102]
|
Lu¨cking, B. C. and Brice, A. (2000) a-synuclein and Parkin-son’s disease. CMLS, Cell. Mol. Life Sci. 57, 1894–1908.
|
[103]
|
Williams, A. D., Portelius, E., Kheterpal, I., Guo, J., Cook, K. D., Xu, Y. and Wetzel, R. (2004) Mapping A amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.
|
[104]
|
Casalone, C., Zanusso, G., Acutis, P., Ferrari, S., Capucci, L., Tagliavini, F., Monaco, S. and Caramelli, M. (2004) Identifica-tion of a second bovine amyloidotic spongiform encephalopa-thy: Molecular similarities with sporadic Creutzfeldt-Jakob disease. PNAS 101, 3065–3070.
|
[105]
|
Ishikawa, K., Doh-ura, K., Kudo, Y., Nishida, N., Murakami-Kubo, I., Ando, Y., Sawada, T. and Iwaki, T. (2004) Amyloid imaging probes are useful for detection of prion plaques and treatment of transmissible spongiform encephalopathies. Jour-nal of General. 85, 1785–1790.
|
[106]
|
Aguzzi, A., Heikenwalder, M. and Miele, G. (2004) Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. J. Clin. Invest. 114, 153–160.
|
[107]
|
Weissmann, C. and Aguzzi, A. (2005) Approaches to therapy of prion diseases. Ann. Rev. of Med. 56, 321–344.
|
[108]
|
Nandi, P. K. and Nicole, J.-C. (2004) Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. J. Mol. Biol. 344, 827–837.
|
[109]
|
Kourie, J I and A, S. A. (2000) Properties of cytotoxic peptide-induced ion channels. Am J Physiol Cell Physiol. 278, C1063–C1087.
|
[110]
|
Kourie, J. I. and L, H. C. (2002) Ion channel formation and membrane-linked pathologies of misfolded hydrophobic pro-teins:the role of dangerous unchaperoned molecules. Clin Exp Pharmacol Physiol, 29, 741–753.
|
[111]
|
Volles, M. J. and T, L. P. (2001) Vesicle permeabilization by protofibrillar α-synuclein: comparison of wild-type with Park-inson’s disease linked mutants and insights in the mechanisms. Biochem. 40, 7812.7819.
|
[112]
|
Williams, A. D., Portelius, E., Kheterpal, I., Guo, J., Cook, K. D., Xu, Y. and Wetzel, R. (2004) Mapping A amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.
|
[113]
|
Dobson. (2004) Principle of protein folding, Misfolding and aggregation. Semin. Cell. Dev. Biol. 15, 3–16.
|
[114]
|
Thomas, Q. and Pederson. (1995) Defective protein folding as a basis of human diseases. TIBS. 20 (11), 456–459.
|
[115]
|
Welch and Brown (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperone. 1(2), 109–115.
|