[1]
|
D. L. Polla and F. F. Lorraine, “Pr?Cessing and Characterization of Piezoelectric Materials and Intergation into Microelectromechanical Systems,” Annual Review Mater Sciense, Vol. 28, 1998, pp. 563-597. doi:10.1146/annurev.matsci.28.1.563
|
[2]
|
T. Takenaka and H. Nagata, “Current Status and Prospects of Lead-Free Piezoelectric Ceramics,” Journal Europe Ceram Science, Vol. 25, No.12, 2005, pp. 2693-2700. doi:10.1016/j.jeurceramsc.2005.03.125
|
[3]
|
H. I. Won, H. H. Nersisyan and C. W. Won, “Low TemPerature Solid-Phase Synthesis of Tetragonal BaTiO3 Powders and Its Characterization,” Materials Letters, Vol. 61, No.7, 2007, pp. 1492-1496. doi:10.1016/j.matlet.2006.07.059
|
[4]
|
Z. X. Hua, Z. J. Min, Z. S. Hua, L. Z. Guo, M. N. Ben and H. Dietrich, “BaTiO3 Nancrystals: Hydrothermal Synthesis and Structural Characterization,” Journal of Crystal Growth, Vol. 283, No. 3-4, 2005, pp. 553-562. doi:10.1016/j.jcrysgro.2005.05.080
|
[5]
|
K. Matsui, T. Noguchi, N. M. Islam and Y. Hakuta, “Hayashi, Rapid Synthesis of BaTiO3 Nanoparticles in Supercritical Water by Continuous Hydrothermal FLow Reaction System,” Journal of Crystal Growth, Vol. 310, No. 3, 2008, pp. 2584-2589. doi:10.1016/j.matlet.2006.06.006
|
[6]
|
T. K. Mandal, “Characterization of Tetragonal BaTiO3 Nanopowders Prepared with a New Soft Chemistry Route,” Material Leters, Vol. 61, No. 3, 2007, pp. 850-854. doi:10.1016/j.matlet.2006.06.006
|
[7]
|
Y. Ma, E. Vileno, S. L. Suib and P. K. Dutta, “Synthesis of Tetragonal BaTiO3 by Microwave Heating and Conventional Heating,” Chemical Material, Vol. 9, No. 12, 1997, pp. 23-31. doi:10.1021/cm970371n
|
[8]
|
H. Liu, C. Hu and Z. L. Wang, “Compoite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides,” Nano Letters, Vol. 6, No. 7, 2006, pp. 1535-1540. doi:10.1021/nl061253e
|
[9]
|
M. Jing, H. C. Guo, L. Hong and X. Y. Feng, “BaTiO3 Nancubes: Size-Selective Formation and Structure Analysis,” Material Letters, Vol. 62, No. 2, 2008, pp. 235-238. doi:10.1016/j.matlet.2007.05.009
|
[10]
|
S. Qin, D. Liu, H. Liu and Z. Zuo, “Size-Dependent Selective Etching Mechanism: Cavity Formation on Barium Titanate Nancubes,” Journal Physical Chemical C, Vol. 112, No. 44, 2008, pp. 17171-17174. doi:10.1021/jp8057993
|
[11]
|
Y. Hotta, K. Tsunekawa, C. Duran, K. Sato, T. Nagaoka and K. Watari, “Low-Temperature Sintering of BaTiO3 Powders Prepared by a Hydrothermal Prcess with Ball Milling System,” Materials Science Engineering A, Vol. 475, No. 1-2, 2008, pp. 57-61. doi:10.1016/j.msea.2006.12.138
|
[12]
|
Y. Hotta, C. Duran, K. Sato, T. Nagaoka and K. Watari, “Densification and Grain Growth in BaTiO3 Ceramics Fabricated from Nanopowders Synthesized by Ball-Milling Assisted Hydrothermal Reaction,” Journal Europe Ceram Science, Vol. 28, No. 3, 2008, pp. 599-604. doi:10.1016/j.jeurcerams?C.2007.07.007
|
[13]
|
H. Takatoshi, S. Toru, S. Tsugio, Y. Shu and X. Yahong, Japan Patent, Tokugan 2009, 61852.
|
[14]
|
Y. Zhang, J. Han and L. Hu, “The Effect of Sintering Additive on Fracture Behavior of Carbon-Whisker-Reinforced Silicon Carbide Composites,” Maerial Science Engineering A, Vol. 480, No. 1-2, 2008, pp. 62-67. doi:10.1016/j.msea.2007.08.034
|
[15]
|
K. Chunga, J. Yoo, C. Lee, D. Lee, Y. Jeong and H. Lee, “Microstructural Dielectric and Piezoelectric Properties of Low-Temperature Sintering Pb(Co1/2W1/2)O3-Pb(Mn1/2-Nb2/3)O3-Pb(Zr,Ti)O3 Ceramics with the Addition of Li2CO3 and Bi2O3,” Sensor Actuat A, Vol. 125, No. 2, 2006, pp. 340-345. doi:10.1016/j.sna.2005.06.018
|
[16]
|
H. You, S. Koo, J. Ha, J. Koh and J. Park, “Microstructure and Dielectric Properties of Li2CO3 Doped 0.7 (Ba,Sr)TiO3-0.3MgO Ceramics,” Current Applied Physics, Vol. 9, No. 5, 2009, pp. 875-879. doi:10.1016/j.cap.2008.08.008
|
[17]
|
T. Karaki, K. Yan and M. Adachi, “Barium Titanate Piezoelectric Ceramics Manufactured by Two-Step Sintering,” Japenese Journal Applied Phyical, Vol. 46, 2007, pp. 7035-7038. doi:10.1143/JJAP.46.7035
|
[18]
|
I. Wei Chen and X. H. Wang, “Sintering Dense Nancrystalline Ceramics Without Final-Stage Grain Growth,” Nature, Vol. 404, 2000, pp. 168-171. doi:10.1038/35004548
|
[19]
|
A. Polotai, K. Breece, E. Dickey and C. Randallw, “A Novel Approach to Sintering Nan?Crystalline Barium Titanate Ceramics,” Journal of the American Ceramic Sciety, Vol. 88, No. 11, 2005, pp. 3008-3012. doi:10.1111/j.1551-2916.2005.00552.x
|
[20]
|
G. Arit, D. hennings and G. de With, “Dielectric Properties of Fine-Grained Barium Titanate Ceramics,” Applied Physical, Vol. 58, 1985, pp. 1619-1625.
|
[21]
|
V. Buscaglia, M. T. Buscaglia, M. Viviani, L. Mitoseriu, P. Nanni, V. Trefiletti, P. Piaggio, I. Gregora, T. Ostapchuk, J. Pokorny and J. Petzelt, “Grain Size And Grain Boundary-Related Effects on the Properties of Nancrystalline Barium Titanate Ceramics,” Journal Europe Ceram Sciense, Vol. 26, No. 14, 2006, pp. 2889-2898. doi:10.1016/j.jeurcerams?C.2006.02.005
|
[22]
|
S. Zhao, H. Wu and Q. Sun, “Study on PSN-PZN-PZT Quaternary Piezoelectric Ceramics Near the Morphotropic Phase Boundary,”Material Science Engineering B, Vol. 123, No. 11, 2005, pp. 203-210. doi:10.1016/j.matlet.2004.12.041
|
[23]
|
Y. Li, W. Chen, Q. Xu, J. Zhou and X. Gu, “Piezoelectric and Ferroelectric Properties of Na0.5Bi0.5TiO3-K0.5Bi0.5Ti-O3-BaTiO3 Piezoelectric Ceramics,” Material Letters, Vol. 59, No. 11, 2005, pp. 1361-1364. doi:10.1016/j.matlet.2004.12.041
|
[24]
|
Y. H. Xie, S. Yin, T. Hashimoto, H. Kimura and T. Sato, “Microwave-Hydrothermal Synthesis of Nano-Sized Sn2+-Doped Batio3 Powders and Dielectric Properties of Corresponding Ceramics Obtained by Spark Plasma Sintering Method,” Journal Material Science, Vol. 44, No. 18, 2009, pp. 4834-4839. doi:10.1007/s10853-009-3737-8
|