[1]
|
Ahima, R.S. and Antwi, D.A. (2008) Brain Regulation of Appetite and Satiety. Endocrinology and Metabolism Clinics of North America, 37, 811-823. http://dx.doi.org/10.1016/j.ecl.2008.08.005
|
[2]
|
King, M.W. (2015) Gut-Brain Interrelationships and Control of Eating Behaviour, 1996-2014, The Medical Biochemistry Page. Org, info @ Last Modified 9 April.
|
[3]
|
Martins, I.J. (2015) Appetite Dysregulation and Obesity in Western Countries. Lambert Book Appetite, E-Book, First Edited by Jones, E., LAP LAMBERT Academic Publishing, ISBN 978-3-659-40372-9, 2013.
|
[4]
|
Li, X. (2013) SIRT1 and Energy Metabolism. Acta Biochimica Biophysica Sinica, 45, 51-60.
http://dx.doi.org/10.1093/abbs/gms108
|
[5]
|
Boutant, M. and Cantó, C. (2013) SIRT1 Metabolic Actions: Integrating Recent Advances from Mouse Models. Molecular Metabolism, 3, 5-18. http://dx.doi.org/10.1016/j.molmet.2013.10.006
|
[6]
|
Chang, H.C. and Guarente, L. (2013) SIRT1 Mediates Central Circadian Control in the SCN by a Mechanism That Decays with Aging. Cell, 153, 1448-1460. http://dx.doi.org/10.1016/j.cell.2013.05.027
|
[7]
|
Mohawk, J.A. and Takahashi, J.S. (2011) Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators. Trends in Neurosciences, 34, 349-358. http://dx.doi.org/10.1016/j.tins.2011.05.003
|
[8]
|
Cavallaro, S. (2015) Cracking the Code of Neuronal Apoptosis and Survival. Cell Death and Disease, 6, e1963.
http://dx.doi.org/10.1038/cddis.2015.309
|
[9]
|
Portt, L., Norman, G., Clapp, C., Greenwood, M. and Greenwood, M.T. (2011) Anti-Apoptosis and Cell Survival: A Review. Biochimica Biophysica Acta, 1813, 238-259. http://dx.doi.org/10.1016/j.bbamcr.2010.10.010
|
[10]
|
Morrison, R.S., Kinoshita, Y., Johnson, M.D., Ghatan, S., Ho, J.T. and Garden, G. (2002) Neuronal Survival and Cell Death Signaling Pathways. Advances in Experimental Medicine and Biology, 513, 41-86.
http://dx.doi.org/10.1007/978-1-4615-0123-7_2
|
[11]
|
Martins, I.J. (2015) Nutrition Increases Survival and Reverses NAFLD and Alzheimer’s Disease. First Edition Edited by Berdos, A., 01/ 2015, E-Book/Printed Book, LAP LAMBERT, ISBN: 978-3-659-78371-5.
|
[12]
|
Radziuk, J.M. (2013) The Suprachiasmatic Nucleus, Circadian Clocks, and the Liver. Diabetes, 62, 1017-1019.
http://dx.doi.org/10.2337/db12-1765
|
[13]
|
Zock, P.L. (2007) Postprandial Lipoprotein Metabolism—Pivot or Puzzle? American Journal of Clinical Nutrition, 85, 331-332.
|
[14]
|
Martins, I.J. and Redgrave, T.G. (2004) Obesity and Post-Prandial Lipid Metabolism. Feast or Famine? The Journal of Nutritional Biochemistry, 15, 130-141. http://dx.doi.org/10.1016/j.jnutbio.2003.10.006
|
[15]
|
Tang, B.L. (2006) SIRT1, Neuronal Cell Survival and the Insulin/IGF-1 Aging Paradox. Neurobiology of Aging, 27, 501-505. http://dx.doi.org/10.1016/j.neurobiolaging.2005.02.001
|
[16]
|
Tran, D., Bergholz, J., Zhang, H., He, H., Wang, Y., Zhang, Y., Li, Q., Kirkland, J.L. and Xiao, Z.X. (2014) Insulin-Like Growth Factor-1 Regulates the SIRT1-p53 Pathway in Cellular Senescence. Aging Cell, 13, 669-678.
http://dx.doi.org/10.1111/acel.12219
|
[17]
|
Gu, Y., Wang, C. and Cohen, A. (2004) Effect of IGF-1 on the Balance between Autophagy of Dysfunctional Mitochondria and Apoptosis. FEBS Letters, 577, 357-360. http://dx.doi.org/10.1016/j.febslet.2004.10.040
|
[18]
|
Ribeiro, M., Rosenstock, T.R., Oliveira, A.M., Oliveira, C.R. and Rego, A.C. (2014) Insulin and IGF-1 Improve Mitochondrial Function in a PI-3K/Akt-Dependent Manner and Reduce Mitochondrial Generation of Reactive Oxygen Species in Huntington’s Disease Knock-In Striatal Cells. Free Radical Biology Medicine, 74, 129-144.
http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.023
|
[19]
|
Yin, F., Jiang, T. and Cadenas, E. (2013) Metabolic Triad in Brain Aging: Mitochondria, Insulin/IGF-1 Signalling and JNK Signalling. Biochemical Society Transactions, 41, 101-105. http://dx.doi.org/10.1042/BST20120260
|
[20]
|
Monteserin-Garcia, J., Al-Massadi, O., Seoane, L.M., Alvarez, C.V., Shan, B., Stalla, J., Paez-Pereda, M., Casanueva, F.F., Stalla, G.K. and Theodoropoulou, M. (2013) Sirt1 Inhibits the Transcription Factor CREB to Regulate Pituitary Growth Hormone Synthesis. FASEB Journal, 27, 1561-1571. http://dx.doi.org/10.1096/fj.12-220129
|
[21]
|
Yamamoto, M., Iguchi, G., Fukuoka, H., Suda, K., Bando, H., Takahashi, M., Nishizawa, H., Seino, S. and Takahashi, Y. (2013) SIRT1 Regulates Adaptive Response of the Growth Hormone—Insulin-Like Growth Factor-I Axis under Fasting Conditions in Liver. Proceedings of the National Academy of Sciences of the United States of America, 110, 14948-14953. http://dx.doi.org/10.1073/pnas.1220606110
|
[22]
|
Martins, I.J. (2015) Diabetes and Organ Dysfunction in the Developing and Developed World. Global Journal of Medical Research, 15, 14-22.
|
[23]
|
Martins, I.J. (2015) LPS Regulates Apolipoprotein E and Aβ Interactions with Effects on Acute Phase Proteins and Amyloidosis. Advances in Aging Research, 4, 69-77. http://dx.doi.org/10.4236/aar.2015.42009
|
[24]
|
Esch, T., Stefano, G.B., Fricchione, G.L. and Benson, H. (2002) Stress-Related Diseases: A Potential Role for Nitric Oxide. Medical Science Monitor, 8, RA103-RA118.
|
[25]
|
Martins, I.J. (2015) Nutritional Diets Accelerate Amyloid Beta Metabolism and Prevent the Induction of Chronic Diseases and Alzheimer’s Disease. Photon eBooks, UBN: 015-A94510112017.
|
[26]
|
Kumari, S., Chaurasia, S.N., Nayak, M.K., Mallick, R.L. and Dash, D. (2015) Sirtuin Inhibition Induces Apoptosis-Like Changes in Platelets and Thrombocytopenia. The Journal of Biological Chemistry, 290, 12290-12299.
http://dx.doi.org/10.1074/jbc.M114.615948
|
[27]
|
Breitenstein, A., Stein, S., Holy, E.W., Camici, G.G., Lohmann, C., Akhmedov, A., Spescha, R., Elliott, P.J., Westphal, C.H., Matter, C.M., Lüscher, T.F. and Tanner, F.C. (2011) Sirt1 Inhibition Promotes in vivo Arterial Thrombosis and Tissue Factor Expression in Stimulated Cells. Cardiovascular Research, 89, 464-472.
http://dx.doi.org/10.1093/cvr/cvq339
|
[28]
|
Chen, L., Feng, Y., Zhou, Y., Zhu, W., Shen, X., Chen, K., Jiang, H. and Liu, D. (2010) Dual Role of Zn2+ in Maintaining Structural Integrity and Suppressing Deacetylase Activity of SIRT1. Journal of Inorganic Biochemistry, 104, 180-185. http://dx.doi.org/10.1016/j.jinorgbio.2009.10.021
|
[29]
|
Gatenby, K.V., Imrie, H. and Kearney, M. (2013) The IGF-1 Receptor and Regulation of Nitric Oxide Bioavailability and Insulin Signalling in the Endothelium. Pflügers Archiv—European Journal of Physiology, 465, 1065-1074.
http://dx.doi.org/10.1007/s00424-013-1218-z
|
[30]
|
Abbas, A., Viswambharan, H., Imrie, H., Rajwani, A., Kahn, M., Gage, M., Cubbon, R., Surr, J., Wheatcroft, S. andKearney, M. (2011) A Endothelial Cell Nitric Oxide Bioavailability and Insulin Sensitivity Are Regulated by IGF-1 and Insulin Receptor Levels. Heart, 97, A1-A2 http://dx.doi.org/10.1136/heartjnl-2011-300110.1
|
[31]
|
Abbas, A., Imrie, H., Viswambharan, H., Sukumar, P., Rajwani, A., Cubbon, R.M., Gage, M., Smith, J., Galloway, S., Yuldeshava, N., Kahn, M., Xuan, S., Grant, P.J., Channon, K.M., Beech, D.J., Wheatcroft, S.B. and Kearney, M.T. (2011) The Insulin-Like Growth Factor-1 Receptor Is a Negative Regulator of Nitric Oxide Bioavailability and Insulin Sensitivity in the Endothelium. Diabetes, 60, 2169-2178. http://dx.doi.org/10.2337/db11-0197
|
[32]
|
Galli, G., Pinchera, A., Piaggi, P., Fierabracci, P., Giannetti, M., Querci, G., Scartabelli, G., Manetti, L., Ceccarini, G., Martinelli, S., Di Salvo, C., Anselmino, M., Bogazzi, F., Landi, A., Vitti, P., Maffei, M. and Santini, F. (2012) Serum Insulin-Like Growth Factor-1 Concentrations Are Reduced in Severely Obese Women and Raise after Weight Loss Induced by Laparoscopic Adjustable Gastric Banding. Obesity Surgery, 22, 1276-1280.
http://dx.doi.org/10.1007/s11695-012-0669-1
|
[33]
|
Tuncel, D., Tolun, F.I. and Toru, I. (2009) Serum Insulin-Like Growth Factor-1 and Nitric Oxide Levels in Parkinson’s Disease. Mediators of Inflammation, 2009, Article ID: 132464.
|
[34]
|
Zheng, W.H., Kar, S., Doré, S. and Quirion, R. (2000) Insulin-Like Growth Factor-1 (IGF-1): A Neuroprotective Trophic Factor Acting via the Akt Kinase Pathway. Journal of Neural Transmission Supplementation, 60, 261-272.
http://dx.doi.org/10.1007/978-3-7091-6301-6_17
|
[35]
|
Zheng, W.H. and Quirion, R. (2004) Comparative Signaling Pathways of Insulin-Like Growth Factor-1 and Brain-Derived Neurotrophic Factor in Hippocampal Neurons and the Role of the PI3 Kinase Pathway in Cell Survival. Journal of Neurochemistry, 89, 844-852. http://dx.doi.org/10.1111/j.1471-4159.2004.02350.x
|
[36]
|
Carro, E. and Torres-Aleman, I. (2009) Insulin-Like Growth Factor I and Alzheimer’s Disease: Therapeutic Prospects? Biochemical Biophysica Research Communications, 385, 434-438.
|
[37]
|
Alves, C.X., Vale, S.H., Dantas, M.M., Maia, A.A., Franca, M.C., Marchini, J.S, Leite, L.D. and Brandao-Neto, J. (2012) Positive Effects of Zinc Supplementation on Growth, GH, IGF1, and IGFBP3 in Eutrophic Children. Journal Pediatry Endocrinology Metabolism, 25, 881-887. http://dx.doi.org/10.1515/jpem-2012-0120
|
[38]
|
Rocha, é.D., de Brito, N.J., Dantas, M.M., Silva, A., Almeida, M. and Brandão-Neto, J. (2015) Effect of Zinc Supplementation on GH, IGF1, IGFBP3, OCN, and ALP in Non-Zinc-Deficient Children. Journal of the American College of Nutrition, 34, 290-299. http://dx.doi.org/10.1080/07315724.2014.929511
|
[39]
|
Wan, Y., Petris, M.J. and Peck, S.C. (2014) Separation of Zinc-Dependent and Zinc-Independent Events during Early LPS-Stimulated TLR4 Signaling in Macrophage Cells. FEBS Letters, 588, 2928-2935.
http://dx.doi.org/10.1016/j.febslet.2014.05.043
|
[40]
|
Haase, H., Ober-Blöbaum, J.L., Engelhardt, G., Hebel, S., Heit, A., Heine, H. and Rink, L. (2008) Zinc Signals Are Essential for Lipopolysaccharide-Induced Signal Transduction in Monocytes. Journal of Immunology, 181, 6491-6502.
http://dx.doi.org/10.4049/jimmunol.181.9.6491
|
[41]
|
Anubhuti, A.S. (2006) Role of Neuropeptides in Appetite Regulation and Obesity: A Review. Neuropeptides, 40, 375-401. http://dx.doi.org/10.1016/j.npep.2006.07.001
|
[42]
|
Baranowska, B., Wolinska-Witort, E., Wasilewska-Dziubinska, E., Roguski, K., Martynska, L. and Chmielowska, M. (2003) The Role of Neuropeptides in the Disturbed Control of Appetite and Hormone Secretion in Eating Disorders. Neuroendocrinology Letters, 24, 431-434.
|
[43]
|
Nyberg, F. (2011) Neuropeptides in Neuroprotection and Neuroregeneration. June 2012 by CRC Press, 319 Pages—4 Color & 81 B/W Illustrations, ISBN: 9781439830628.
|
[44]
|
Sharma, R.K. and Sethi, A. (2011) Klotho An Anti-Aging Gene. International Journal of Pharma and Bio Sciences, 2, 497-507.
|
[45]
|
Yamamoto, M., Clark, J.D., Pastor, J.V., Gurnani, P., Nandi, A., Kurosu, H., Miyoshi, M., Ogawa, Y., Castrillon, D.H., Rosenblatt, K.P. and Kuro-o, M. (2005) Anti-Aging Hormone Klotho Regulation of Oxidative Stress by the Mechanisms of Signal Transduction. The Journal of Biological Chemistry, 280, 38029-38034.
http://dx.doi.org/10.1074/jbc.M509039200
|
[46]
|
Hsua, S.-C., Huanga, S.-M, Chena, A., Sund, C.-Y., Lina, S.-H., Chena, J.-H., Liub, S.-T. and Hsua, Y.-J. (2014) Resveratrol Increases Anti-Aging Klotho Gene Expression via the Activating Transcription Factor 3/c-Jun Complex-Me- diated Signaling Pathway. The International Journal of Biochemistry & Cell Biology, 53, 361-371.
http://dx.doi.org/10.1016/j.biocel.2014.06.002
|
[47]
|
de Oliveira, R.M. (2006) Klotho RNAi Induces Premature Senescence of Human Cells via a p53/p21 Dependent Pathway. FEBS Letters, 580, 5753-5758. http://dx.doi.org/10.1016/j.febslet.2006.09.036
|
[48]
|
Lee, J., Jeong, D.-J., Kim, J., Lee, S., Park, J.-H., Chang, B., Jung, S.-I., et al. (2010) The Anti-Aging Gene KLOTHO Is a Novel Target for Epigenetic Silencing in Human Cervical Carcinoma. Molecular Cancer, 9, 109.
http://dx.doi.org/10.1186/1476-4598-9-109
|
[49]
|
Wolf, I., Levanon-Cohen, S., Bose, S., Ligumsky, H., Sredni, B., Kanety, H., Kuro-o, M., Karlan, B., Kaufman, B., Koeffler, H.P. and Rubinek, T. (2008) Klotho: A Tumor Suppressor and a Modulator of the IGF-1 and FGF Pathways in Human Breast Cancer. Oncogene, 27, 7094-7105. http://dx.doi.org/10.1038/onc.2008.292
|
[50]
|
Bartke, A. (2006) Long-Lived Klotho Mice: New Insights into the Roles of IGF-1 and Insulin in Aging. Trends in Endocrinology and Metabolism, 17, 33-35. http://dx.doi.org/10.1016/j.tem.2006.01.002
|
[51]
|
Zhang, F., Kato, B.S., Gardner, J.P., Kimura, M., Spector, T.D. and Ahmadi, K.R. (2007) Lack of Association between Leukocyte Telomere Length and Genetic Variants in Two Ageing-Related Candidate Genes. Mechanisms of Ageing Development, 128, 415-422. http://dx.doi.org/10.1016/j.mad.2007.05.007
|
[52]
|
Dubal, D.B. (2014) Life Extension Factor Klotho Enhances Cognition. Cell Reports, 7, 1065-1076.
http://dx.doi.org/10.1016/j.celrep.2014.03.076
|
[53]
|
Drüeke, T.B. and Massy, Z.A. (2013) Circulating Klotho Levels: Clinical Relevance and Relationship with Tissue Klotho Expression. Kidney International, 83, 13-15. http://dx.doi.org/10.1038/ki.2012.370
|
[54]
|
Trinei, M., Berniakovich, I., Beltrami, E., Migliaccio, E., Fassina, A., Pelicci, P.G. and Giorgio, M. (2009) p66Shc Signals to Age. AGING, 1, 503-510.
|
[55]
|
Bhat, S.S., Anand, D. and Khanday, F.A. (2015) p66Shc as a Switch in Bringing about Contrasting Responses in Cell Growth: Implications on Cell Proliferation and Apoptosis. Molecular Cancer, 14, 76.
http://dx.doi.org/10.1186/s12943-015-0354-9
|
[56]
|
Skulachev, V.P. (2000) The p66Shc Protein: A Mediator of the Programmed Death of an Organism? IUBMB Life, 49, 177-180. http://dx.doi.org/10.1080/713803613
|
[57]
|
Migliaccio, E., Giorgio, M. and Pelicci, P.G. (2013) P53 and Aging: Role of p66Shc. Aging (Albany NY), 5, 488-489.
|
[58]
|
Zlotorynski, E. (2014) P66Shc Inhibits Anabolic Metabolism. Nature Reviews Molecular Cell Biology, 15, 222.
|
[59]
|
Soliman, M.A., Rahman, A.M.A., Lamming, D.A., Birsoy, K., Pawling, J., Frigolet, M.E., Lu, H., Fantus, I.G., Pasculescu, A., Zheng, Y., Sabatini, D.M., Dennis, J.W. and Pawson, T. (2014) The Adaptor Protein p66Shc Inhibits mTOR-Dependent Anabolic Metabolism. Science Signal, 7, ra17. http://dx.doi.org/10.1126/scisignal.2004785
|
[60]
|
Sun, L., Xiao, L., Nie, J., Liu, F.Y., Ling, G.H., Zhu, X.J., Tang, W.B., Chen, W.C., Xia, Y.C., Zhan, M., Ma, M.M., Peng, Y.M., Liu, H., Liu, Y.H. and Kanwar, Y.S. (2010) p66Shc Mediates High-Glucose and Angiotensin II-Induced Oxidative Stress Renal Tubular Injury via Mitochondrial-Dependent Apoptotic Pathway. American Journal of Physiology Renal Physiology, 299, F1014-F1025. http://dx.doi.org/10.1152/ajprenal.00414.2010
|
[61]
|
Graiani, G., Lagrasta, C., Migliaccio, E., Spillmann, F., Meloni, M., Madeddu, P., Quaini, F., Padura, I.M., Lanfrancone, L., Pelicci, P. and Emanueli, C. (2005) Genetic Deletion of the p66Shc Adaptor Protein Protects from Angiotensin II-Induced Myocardial Damage. Hypertension, 46, 433-440.
http://dx.doi.org/10.1161/01.HYP.0000174986.73346.ba
|
[62]
|
De Marchi, E., Baldassari, F., Bononi, A., Wieckowski, M.R. and Pinton, P. (2013) Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C. Oxidative Medicine and Cellular Longevity, 2013, Article ID: 564961. http://dx.doi.org/10.1155/2013/564961
|
[63]
|
Spescha, R.D., Klohs, J., Semerano, A., Giacalone, G., Derungs, R.S., Reiner, M.F., Gutierrez, D.R., Mendez-Carmona, N., et al. (2015) Post-Ischaemic Silencing of p66Shc Reduces Ischaemia/Reperfusion Brain Injury and Its Expression Correlates to Clinical Outcome in Stroke. European Heart Journal, 36, 1590-1600.
http://dx.doi.org/10.1093/eurheartj/ehv140
|
[64]
|
Spescha, R.D., Shi, Y., Wegener, S., Keller, S., Weber, B., Wyss, M.M., Lauinger, N., Tabatabai, G., Paneni, F., Cosentino, F., Hock, C., Weller, M., Nitsch, R.M, Lüscher, T.F. and Camici, G.G. (2013) Deletion of the Ageing Gene p66Shc Reduces Early Stroke Size Following Ischaemia/Reperfusion Brain Injury. European Heart Journal, 34, 96- 103. http://dx.doi.org/10.1093/eurheartj/ehs331
|
[65]
|
Natalicchio, A., Tortosa, F., Perrini, S., Laviola, L. and Giorgino, F. (2011) p66Shc, a Multifaceted Protein Linking Erk Signalling, Glucose Metabolism, and Oxidative Stress. Archives of Physiology and Biochemistry, 117, 116-124.
http://dx.doi.org/10.3109/13813455.2011.562513
|
[66]
|
Kim, Y.R., Kim, C.S., Naqvi, A., Kumar, A., Kumar, S., Hoffman, T.A. and Irani, K. (2012) Epigenetic Upregulation of p66Shc Mediates Low-Density Lipoprotein Cholesterol-Induced Endothelial Cell Dysfunction. American Journal of Physiology: Heart and Circulatory Physiology, 303, H189-H196. http://dx.doi.org/10.1152/ajpheart.01218.2011
|
[67]
|
Berniakovich, I., Trinei, M., Stendardo, M., Migliaccio, E., Minucci, S., Bernardi, P., Pelicci, P.G. and Giorgio, M. (2008) p66Shc-Generated Oxidative Signal Promotes Fat Accumulation. The Journal of Biological Chemistry, 283, 34283-34293. http://dx.doi.org/10.1074/jbc.M804362200
|
[68]
|
Giovannini, C., Scazzocchio, B., Matarrese, P., Varì, R., D’Archivio, M., Di Benedetto, R., Casciani, S., Dessì, M.R., Straface, E., Malorni, W. and Masella, R. (2008) Apoptosis Induced by Oxidized Lipids Is Associated with Up-Regulation of p66Shc in Intestinal Caco-2 Cells: Protective Effects of Phenolic Compounds. Journal of Nutritional Biochemistry, 19, 118-128. http://dx.doi.org/10.1016/j.jnutbio.2007.01.010
|
[69]
|
Favetta, L.A., Robert, C., King, W.A. and Betts, D.H. (2004) Expression Profiles of p53 and p66Shc during Oxidative Stress-Induced Senescence in Fetal Bovine Fibroblasts. Experimental Cell Research, 299, 36-48.
http://dx.doi.org/10.1016/j.yexcr.2004.05.009
|
[70]
|
Ziolkowski, W., Flis, D.J., Halon, M., Vadhana, D.M., Olek, R.A., Carloni, M., Antosiewicz, J., Kaczor, J.J. and Gabbianelli, R. (2015) Prolonged Swimming Promotes Cellular Oxidative Stress and p66Shc Phosphorylation, but Does Not Induce Oxidative Stress in Mitochondria in the Rat Heart. Free Radical Research, 49, 7-16.
http://dx.doi.org/10.3109/10715762.2014.968147
|
[71]
|
Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S. and Ventura, A. (2002) A p53-p66Shc Signalling Pathway Controls Intracellular Redox Status, Levels of Oxidation-Damaged DNA and Oxidative Stress-Induced Apoptosis. Oncogene, 21, 3872-3878. http://dx.doi.org/10.1038/sj.onc.1205513
|
[72]
|
Kim, C.-S., Jung, S.-B., Naqvi, A., Hoffman, T.A., DeRicco, J., Yamamori, T., Cole, M.P., Jeon, B.H. and Irani, K. (2008) P53 Impairs Endothelium-Dependent Vasomotor Function through Transcriptional Upregulation of p66Shc. Circulation Research, 103, 1441-1450. http://dx.doi.org/10.1161/CIRCRESAHA.108.181644
|
[73]
|
Zhou, S., Chen, H.Z., Wan, Y.Z., Zhang, Q.J., Wei, Y.S., Huang, S., Liu, J.J., Lu, Y.B., Zhang, Z.Q., Yang, R.F., Zhang, R., Cai, H., Liu, D.P. and Liang, C.C. (2011) Repression of p66Shc Expression by SIRT1 Contributes to the Prevention of Hyperglycemia-Induced Endothelial Dysfunction. Circulation Research, 109, 639-648.
http://dx.doi.org/10.1161/CIRCRESAHA.111.243592
|
[74]
|
Natalicchio, A., Tortosa, F., Labarbuta, R., Biondi, G., Marrano, N. and Carchia, E. (2015) The p66Shc Redox Adaptor Protein Is Induced by Saturated Fatty Acids and Mediates Lipotoxicity-Induced Apoptosis in Pancreatic Beta Cells. Diabetologia, 58, 1260-1271. http://dx.doi.org/10.1007/s00125-015-3563-2
|
[75]
|
Smith, W.W., Norton, D.D., Gorospe, M., Jiang, H., Nemoto, S., Holbrook, N.J., Finkel, T. and Kusiak, J.W. (2005) Phosphorylation of p66Shc and Forkhead Proteins Mediates A Beta Toxicity. Journal of Cell Biology, 169, 331-339.
http://dx.doi.org/10.1083/jcb.200410041
|
[76]
|
Bashir, M., Parray, A.A., Baba, R.A., Bhat, H.F., Bhat, S.S., Mushtaq, U., Andrabi, K.I. and Khanday, F.A. (2014) β-Amyloid-Evoked Apoptotic Cell Death Is Mediated through MKK6-p66Shc Pathway. Neuromolecular Medicine, 16, 137-149. http://dx.doi.org/10.1007/s12017-013-8268-4
|
[77]
|
Martins, I.J. (2015) Unhealthy Diets Determine Benign or Toxic Amyloid Beta States and Promote Brain Amyloid Beta Aggregation. Austin Journal of Clinical Neurology, 2, 1060-1066.
|
[78]
|
Martins, I.J. (2015) Diabetes and Cholesterol Dyshomeostasis Involve Abnormal α-Synuclein and Amyloid Beta Transport in Neurodegenerative Diseases. Austin Alzheimer’s Journal of Parkinsons Disease, 2, 1020-1028.
|
[79]
|
Martins, I.J. (2015) Unhealthy Nutrigenomic Diets Accelerate NAFLD and Adiposity in Global Communities. Journal of Molecular and Genetic Medicine, 9, 1-11.
|
[80]
|
Ausserlechner, M.J., Hagenbuchner, J., Fuchs, S., Geiger, K. and Obexer, P. (2012) FOXO Transcription Factors as Potential Therapeutic Targets in Neuroblastoma Neuroblastoma. Present and Future Edited by Prof. Shimada, H., ISBN: 978-953-307-016-2, Hard Cover, 366 p, Publisher InTech, Published Online.
|
[81]
|
Shang, Y.C., Chong, Z.Z., Hou, J. and Maiese, K. (2009) The Forkhead Transcription Factor FOXO3a Controls Microglial Inflammatory Activation and Eventual Apoptotic Injury through Caspase 3. Current Neurovascular Research, 6, 20-31. http://dx.doi.org/10.2174/156720209787466064
|
[82]
|
Gilley, J., Coffer, P.J. and Ham, J. (2003) FOXO Transcription Factors Directly Activate Bim Gene Expression and Promote Apoptosis in Sympathetic Neurons. Journal of Cell Biology, 162, 613-622.
http://dx.doi.org/10.1083/jcb.200303026
|
[83]
|
Gross, D.N., van den Heuvel, A.P.J. and Birnbaum, M.J. (2008) The Role of FoxO in the Regulation of Metabolism. Oncogene, 27, 2320-2336. http://dx.doi.org/10.1038/onc.2008.25
|
[84]
|
Zhu, W., Bijur, G.N., Styles, N.A. and Li, X. (2004) Regulation of FOXO3a by Brain-Derived Neurotrophic Factor in Differentiated Human SH-SY5Y Neuroblastoma Cells. Molecular Brain Research, 126, 45-56.
http://dx.doi.org/10.1016/j.molbrainres.2004.03.019
|
[85]
|
Brunet, A., et al. (2004) Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase. Science, 303, 2011-2015. http://dx.doi.org/10.1126/science.1094637
|
[86]
|
Hori, Y.S., Kuno, A., Hosoda, R. and Horio, Y. (2013) Regulation of FOXOs and p53 by SIRT1 Modulators under Oxidative Stress. PLoS ONE, 8, e73875. http://dx.doi.org/10.1371/journal.pone.0073875
|
[87]
|
Shemi, D., Azab, A.N. and Kaplanski, J. (2000) Time-Dependent Effect of LPS on PGE2 and TNF-Alpha Production by Rat Glial Brain Culture: Influence of COX and Cytokine Inhibitors. Journal of Endotoxin Research, 6, 377-381.
|
[88]
|
Henkel, J., Frede, K., Schanze, N., Vogel, H., Schürmann, A., Spruss, A., Bergheim, I. and Püschel, G.P. (2012) Stimulation of Fat Accumulation in Hepatocytes by PGE2-Dependent Repression of Hepatic Lipolysis, β-Oxidation and VLDL-Synthesis. Laboratory Investigation, 92, 1597-1606. http://dx.doi.org/10.1038/labinvest.2012.128
|
[89]
|
Boucher, J., Charalambous, M., Zarse, K., Mori, M.A., Kleinridders, A., Ristow, M., Ferguson-Smith, A.C. and Kahn, C.R. (2014) Insulin and Insulin-Like Growth Factor 1 Receptors Are Required for Normal Expression of Imprinted Genes. Proceedings of the National Academy of Sciences of the United States of America, 111, 14512-14517.
http://dx.doi.org/10.1073/pnas.1415475111
|
[90]
|
Djiogue, S., Kamdje, A.H.N., Vecchio, L., Kipanyula, M.J., Farahna, M., Aldebasi, Y. and Etet, P.F.S. (2013) Insulin Resistance and Cancer: The Role of Insulin and IGFs. Endocrine Related Cancer, 20, R1-R17.
http://dx.doi.org/10.1530/ERC-12-0324
|
[91]
|
Arcidiacono, B., Iiritano, S., Nocera, A., Possidente, K., Nevolo, M.T., Ventura, V., Foti, D., Chiefari, E. and Brunetti, A. (2012) Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms. Experimental Diabetes Research, 2012, Article ID: 789174.
|
[92]
|
Hallett, P.J., McLean, J.R., Kartunen, A., Langston, J.W. and Isacson, O. (2012) Alpha-Synuclein Overexpressing Transgenic Mice Show Internalorgan Pathology and Autonomic Deficits. Neurobiology Disease, 47, 258-267.
http://dx.doi.org/10.1016/j.nbd.2012.04.009
|
[93]
|
Tai, Y., Chen, L., Huang, E., Liu, C., Yang, X., Qiu, P. and Wang, H. (2014),Protective Effect of Alpha-Synuclein Knockdown on Methamphetamine-Induced Neurotoxicity in Dopaminergic Neurons. Neural Regeneration Research, 9, 951-958. http://dx.doi.org/10.4103/1673-5374.133146
|
[94]
|
Kao, S.Y. (2011) Rescue of Alpha-Synuclein Cytotoxicity by Insulin-Like Growth Factors. Neurosignals, 19, 86-96.
|
[95]
|
Chung, J.Y., Lee, S.J., Lee, S.H., Jung, Y.S., Ha, N.C., Seol, W. and Park, B.J. (2011) Direct Interaction of α-Synuclein and AKT Regulates IGF-1 Signaling: Implication of Parkinson Disease. Neurosignals, 19, 86-96.
http://dx.doi.org/10.1159/000325028
|
[96]
|
Martins, I.J., Creegan, R., Lim, W.L.F. and Martins, R.N. (2013) Molecular Insights into Appetite Control and Neuroendocrine Disease as Risk Factors for Chronic Diseases in Western Countries. Open Journal of Endocrine and Metabolic Diseases, 3, 11-33. http://dx.doi.org/10.4236/ojemd.2013.35A002
|
[97]
|
Liu, J., Shen, W., Zhao, B., Wang, Y., Wertz, K., Weber, P. and Zhang, P. (2009) Targeting Mitochondrial Biogenesis for Preventing and Treating Insulin Resistance in Diabetes and Obesity: Hope from Natural Mitochondrial Nutrients. Advanced Drug Delivery Reviews, 61, 1343-1352. http://dx.doi.org/10.1016/j.addr.2009.06.007
|
[98]
|
Zamora, M. and Villena, J.A. (2014) Targeting Mitochondrial Biogenesis to Treat Insulin Resistance. Current Pharmaceutical Design, 20, 5527-5557. http://dx.doi.org/10.2174/1381612820666140306102514
|
[99]
|
Brown, G.C. (1999) Nitric Oxide and Mitochondrial Respiration. Biochimica Biophysica Acta, 1411, 351-369.
http://dx.doi.org/10.1016/S0005-2728(99)00025-0
|
[100]
|
Nisoli, E. and Carruba, M.O. (2006) Nitric Oxide and Mitochondrial Biogenesis. Journal of Cell Science, 119, 2855-2862. http://dx.doi.org/10.1242/jcs.03062
|
[101]
|
Yi, C.X., la Fleur, S.E., Fliers, E. and Kalsbeek, A. (2010) The Role of the Autonomic Nervous Liver Innervation in the Control of Energy Metabolism. Biochimica Biophysica Acta, 1802, 416-431.
http://dx.doi.org/10.1016/j.bbadis.2010.01.006
|
[102]
|
Xu, M., Iwasaki, T., Shimokawa, N., Sajdel-Sulkowska, E.M. and Koibuchi, N. (2013) The Effect of Low Dose Lipopolysaccharide on Thyroid Hormone-Regulated Actin Cytoskeleton Modulation and Type 2 Iodothyronine Deiodinase Activity in Astrocytes. Endocrine Journal, 60, 1221-1230. http://dx.doi.org/10.1507/endocrj.EJ13-0294
|
[103]
|
Vélez, M.L., Costamagna, E., Kimura, E.T., Fozzatti, L., Pellizas, C.G., Montesinos, M.M., Lucero, A.M., Coleoni, A.H., Santisteban, P. and Masini-Repiso, A.M. (2006) Bacterial Lipopolysaccharide Stimulates the Thyrotropin-Dependent Thyroglobulin Gene Expression at the Transcriptional Level by Involving the Transcription Factors Thyroid Transcription Factor-1 and Paired Box Domain Transcription Factor 8. Endocrinology, 147, 3260-3275.
http://dx.doi.org/10.1210/en.2005-0789
|
[104]
|
Stafford, J.M., Yu, F., Printz, R., Hasty, A.H., Swift, L.L. and Niswender, K.D. (2008) Central Nervous System Neuropeptide Y Signaling Modulates VLDL Triglyceride Secretion. Diabetes, 57, 1482-1490.
http://dx.doi.org/10.2337/db07-1702
|
[105]
|
Rojas, J.M., Bruinstroop, E., Printz, R.L., Alijagic-Boers, A., Foppen, E., Turney, M.K., George, L., Beck-Sickinger, A.-G, Kalsbeek, A. and Niswender, K.D. (2015) Central Nervous System Neuropeptide Y Regulates Mediators of Hepatic Phospholipid Remodeling and Very Low-Density Lipoprotein Triglyceride Secretion via Sympathetic Innervation. Molecular Metabolism, 4, 210-221. http://dx.doi.org/10.1016/j.molmet.2015.01.004
|
[106]
|
Ng, F., Wijaya, L. and Tang, B.L. (2015) SIRT1 in the Brain-Connections with Aging-Associated Disorders and Lifespan. Frontier Cell Neuroscience, 9, 64. http://dx.doi.org/10.3389/fncel.2015.00064
|
[107]
|
Zocchi, L. and Sassone-Corsi, P. (2012) SIRT1-Mediated Deacetylation of MeCP2 Contributes to BDNF Expression. Epigenetics, 7, 695-700. http://dx.doi.org/10.4161/epi.20733
|
[108]
|
Jeong, H., Cohen, D.E., Cui, L., Supinski, A., Savas, J.N., Mazzulli, J.R., Yates, J.R., Bordone, L., Guarente, L. and Krainc, D. (2011) Sirt1 Mediates Neuroprotection from Mutant Huntingtin by Activation of the TORC1 and CREB Transcriptional Pathway. Nature Medicine, 18, 159-165. http://dx.doi.org/10.1038/nm.2559
|
[109]
|
Xapelli, S., Bernardino, L., Ferreira, R., Grade, S., Silva, A.P., Salgado, J.R., Cavadas, C., Grouzmann, E., Poulsen, F.R., Jakobsen, B., Oliveira, C.R. and Zimmer, J. (2008) Interaction between Neuropeptide Y (NPY) and Brain-Derived Neurotrophic Factor in NPY-Mediated Neuroprotection against Excitotoxicity: A Role for Microglia. European Journal of Neuroscience, 27, 2089-2102. http://dx.doi.org/10.1111/j.1460-9568.2008.06172.x
|
[110]
|
Reibel, S., Vivien-Roels, B., Lê, B.T., Larmet, Y., Carnahan, J., Marescaux, C. and Depaulis, A. (2000) Overexpression of Neuropeptide Y Induced by Brain-Derived Neurotrophic Factor in the Rat Hippocampus Is Long Lasting. European Journal of Neuroscience, 12, 595-605. http://dx.doi.org/10.1046/j.1460-9568.2000.00941.x
|
[111]
|
Golden, E., Emiliano, A., Maudsley, S., Windham, B.G., Carlson, O.D. and Egan, J.M. (2010) Circulating Brain-Derived Neurotrophic Factor and Indices of Metabolic and Cardiovascular Health: Data from the Baltimore Longitudinal Study of Aging. PLoS ONE, 5, e10099. http://dx.doi.org/10.1371/journal.pone.0010099
|
[112]
|
Lee, R.G., Rains, T.M., Tovar-Palacio, C., Beverly, J.L. and Shay, N.F. (1998) Zinc Deficiency Increases Hypothalamic Neuropeptide Y and Neuropeptide Y mRNA Levels and Does Not Block Neuropeptide Y-Induced Feeding in Rats. Journal of Nutrition, 128, 1218-1223.
|
[113]
|
Williamson, P.S., Browning, J.D., Sullivan, M.J., O’Dell, B.L. and Macdonald, R.S. (2002) Neuropeptide Y Fails to Normalize Food Intake in Zinc-Deficient Rats. Nutrition Neuroscience, 5, 19-25.
http://dx.doi.org/10.1080/10284150290007100
|
[114]
|
Puca, R., Nardinocchi, L., Porru, M., Simon, A.J., Rechavi, G., Leonetti, C., Givol, D. and D’Orazi, G. (2011) Restoring p53 Active Conformation by Zinc Increases the Response of Mutant p53 Tumor Cells to Anticancer Drugs. Cell Cycle, 10, 1679-1689. http://dx.doi.org/10.4161/cc.10.10.15642
|
[115]
|
Shen, L., Tso, P., Woods, S.C., Clegg, D.J., Barber, K.L., Carey, K. and Liu, M. (2008) Brain Apolipoprotein E: An Important Regulator of Food Intake in Rats. Diabetes, 57, 2092-2098. http://dx.doi.org/10.2337/db08-0291
|
[116]
|
Shen, L., Tso, P., Wang, D.Q., Woods, S.C., Davidson, W.S., Sakai, R. and Liu, M. (2009) Up-Regulation of Apolipoprotein E by Leptin in the Hypothalamus of Mice and Rats. Physiology Behaviour, 98, 223-228.
http://dx.doi.org/10.1016/j.physbeh.2009.05.013
|
[117]
|
Knight, D.S., Mahajan, D.K. and Qiao, X. (2001) Dietary Fat Up-Regulates the Apolipoprotein E mRNA Level in the Zucker Lean Rat Brain. Neuroreport, 12, 3111-3115. http://dx.doi.org/10.1097/00001756-200110080-00026
|
[118]
|
Mastronardi, C.A., Yu, W.H., Srivastava, V.K., Dees, W.L. and McCann, S.M. (2001) Lipopolysaccharide-Induced Leptin Release Is Neurally Controlled. Proceedings of the National Academy of Sciences of the United States of America, 98, 14720-14725. http://dx.doi.org/10.1073/pnas.251543598
|
[119]
|
Sachot, C., Poole, S. and Luheshi, G.N. (2004) Circulating Leptin Mediates Lipopolysaccharide-Induced Anorexia and Fever in Rats. Journal of Physiology, 561, 263-272. http://dx.doi.org/10.1113/jphysiol.2004.074351
|
[120]
|
Zu, L., He, J., Jiang, H., Xu, C., Pu, S. and Xu, G. (2009) Bacterial Endotoxin Stimulates Adipose Lipolysis via Toll-Like Receptor 4 and Extracellular Signal-Regulated Kinase Pathway. Journal of Biological Chemistry, 284, 5915-5926.
http://dx.doi.org/10.1074/jbc.M807852200
|
[121]
|
Hunter, D.J. (2005) Gene-Environment Interactions in Human Diseases. Nature Reveiw Genetics, 6, 287-298.
http://dx.doi.org/10.1038/nrg1578
|
[122]
|
Martins, I.J. (2013) Increased Risk for Obesity and Diabetes with Neurodegeneration in Developing Countries. Journal of Molecular and Genetic Medicine, S1, 001.
|
[123]
|
Martins, I.J. (2014) Induction of NAFLD with Increased Risk of Obesity and Chronic Diseases in Developed Countries. Open Journal of Endocrine and Metabolic Diseases, 4, 90-110. http://dx.doi.org/10.4236/ojemd.2014.44011
|
[124]
|
Scott, M.J., Liu, S., Su, G.L., Vodovotz, Y. and Billiar, T.R. (2005) Hepatocytes Enhance Effects of Lipopolysaccharide on Liver Nonparenchymal Cells through Close Cell Interactions. Shock, 23, 453-458.
http://dx.doi.org/10.1097/01.shk.0000160939.08385.f1
|
[125]
|
Qatanani, M. and Lazar, M.A. (2007) Mechanisms of Obesity-Associated Insulin Resistance: Many Choices on the Menu. Genes Development, 21, 1443-1455. http://dx.doi.org/10.1101/gad.1550907
|
[126]
|
Belosludtsev, K., Saris, N.E., Andersson, L.C., Belosludtseva, N., Agafonov, A., Sharma, A., Moshkov, D.A. and Mironova, G.D. (2006) On the Mechanism of Palmitic Acid-Induced Apoptosis: The Role of a Pore Induced by Palmitic Acid and Ca2+ in Mitochondria. Journal of Bioenergetics and Biomembranes, 38, 113-120.
http://dx.doi.org/10.1007/s10863-006-9010-9
|
[127]
|
Darzi, J., Frost, G.S. and Robertson, M.D. (2011) Do SCFA Have a Role in Appetite Regulation? Proceedings of the Nutrition Society, 70, 119-128. http://dx.doi.org/10.1017/s0029665110004039
|
[128]
|
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., Carling, D., Swann, J.R., Gibson, G., Viardot, A., Morrison, D., Louise, T.E. and Bell, J.D. (2014) The Short-Chain Fatty Acid Acetate Reduces Appetite via a Central Homeostatic Mechanism. Nature Communications, 5, 3611. http://dx.doi.org/10.1038/ncomms4611
|
[129]
|
Licciardi, P.V., Ververis, K. and Karagiannis, T.C. (2011) Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids. International Scholarly Research Network ISRN Allergy, 2011, Article ID: 869647.
|
[130]
|
Pouillart, P.R. (1998) Role of Butyric Acid and Its Derivatives in the Treatment of Colorectal Cancer and Hemoglobinopathies. Life Science, 63, 1739-1760. http://dx.doi.org/10.1016/S0024-3205(98)00279-3
|
[131]
|
Gasior, M., Rogawski, M.A. and Hartman, A.L. (2006). Neuroprotective and Disease-Modifying Effects of the Ketogenic Diet. Behavioural Pharmacology, 17, 431-439. http://dx.doi.org/10.1097/00008877-200609000-00009
|
[132]
|
Magenta, A., Greco, S., Capogrossi, M.C., Gaetano, C. and Martelli, F. (2014) Nitric Oxide, Oxidative Stress, and p66Shc Interplay in Diabetic Endothelial Dysfunction. BioMed Research International, 2014, Article ID: 193095.
http://dx.doi.org/10.1155/2014/193095
|
[133]
|
Litvinova, L., Atochin, D.N., Fattakhov, N., Vasilenko, M., Zatolokin, P. and Kirienkova, E. (2015) Nitric Oxide and Mitochondria in Metabolic Syndrome. Frontier Physiology, 17, 20.
|
[134]
|
Morley, J.E., Farr, S.A, Sell, R.L., Hileman, S.M. and Banks, W.A. (2011) Nitric Oxide Is a Central Component in Neuropeptide Regulation of Appetite. Peptides, 32, 776-780. http://dx.doi.org/10.1016/j.peptides.2010.12.015
|
[135]
|
Vieira, H. and Kroemer, G. (2003) Mitochondria as Targets of Apoptosis Regulation by Nitric Oxide. IUBMB Life, 55, 613-616. http://dx.doi.org/10.1080/15216540310001639652
|
[136]
|
Stokkan, K.A., Yamazaki, S., Tei, H., Sakaki, Y. and Menaker, M. (2001) Entrainment of the Circadian Clock in the Liver by Feeding. Science, 291, 490-493. http://dx.doi.org/10.1126/science.291.5503.490
|
[137]
|
Martins, I.J. (2015) Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases. International Journal of Molecular Science, 16, 29554-29573. http://dx.doi.org/10.3390/ijms161226190
|
[138]
|
Martins, I.J, Mortimer, B.C., Miller, J. and Redgrave, T.G. (1996) Effects of Particle Size and Number on the Plasma Clearance of Chylomicrons and Remnants. Journal of Lipid Research, 37, 2696-2705.
|
[139]
|
Martins, I.J. (2015) Nutritional and Genotoxic Stress Contributes to Diabetes and Neurodegenerative Diseases Such as Parkinson’s and Alzheimer’s Diseases. In: Atta-ur-Rahma, Eds., Frontiers in Clinical Drug Research—CNS and Neurological Disorders, Vol. 3, Bentham Science Publishers, Sharjah, 158-192.
|
[140]
|
Gentilini, D., Mari, D., Castaldi, D., Remondini, D., Ogliari, G., Ostan, R., Bucci, L., Sirchia, S.M., Tabano, S., Cavagnini, F., Monti, D., Franceschi, C., Di Blasio, A.M. and Vitale, G. (2013) Role of Epigenetics in Human Aging and Longevity: Genome-Wide DNA Methylation Profile in Centenarians and Centenarians’ Offspring. Age (Dordr), 35, 1961-1973. http://dx.doi.org/10.1007/s11357-012-9463-1
|