Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits To Graviton Mass
Andrew Beckwith
DOI: 10.4236/jmp.2011.27086   PDF    HTML   XML   5,949 Downloads   9,438 Views   Citations


We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical "particles", which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear "deterministic" background.

Share and Cite:

A. Beckwith, "Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits To Graviton Mass," Journal of Modern Physics, Vol. 2 No. 7, 2011, pp. 730-751. doi: 10.4236/jmp.2011.27086.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Y. Kuchiev, “Can Gravity Appear Due to Polarization of Instantons in SO(4) Gauge Theory?” Classical and Quantum Gravity, Vol. 15, No. 7, 1998, pp. 1895-1913. doi:10.1088/0264-9381/15/7/008
[2] I. Andri?, L. Jonke and D. Jurman, “Solitons and Giants in Matrix Models,” Progress of Physics, Vol. 56, No. 4-5, 2008, pp. 324-329.
[3] D. Perkins, “Particle Astrophysics,” Oxford University press, Oxford, 2003.
[4] L. Glinka, “Preliminaries in Many-Particle Quantum Gravity. Einstein-FriedmannSpacetime,”;
[5] L. Glinka, “Quantum Information from Graviton-Matter Gas,” Symmetry, Integrability and Geometry: Methods and Applications, Vol. 3, No. 087, 2007, pp. 1-13.
[6] Y. J. Ng, “Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality,” Entropy, Vol. 10, No. 4, 2008, pp. 441-461. doi:10.3390/e10040441
[7] M. Asakawa, T. Hatsuda and Y. Nakahara, “Maximum entropy analysis of the spectral functions in lattice QCD,” Progress in Particle and Nuclear Physics, Vol. 46, No. 2, 2001, pp. 459-508. doi:10.1016/S0146-6410(01)00150-8
[8] M. Asakawa, S. A. Bass and B. Müller, “Anomalous Viscosity of an Expanding Quark-Gluon Plasma,” Physical Review Letters, Vol. 96, No. 25, 2006, Article ID: 252301. doi:10.1103/PhysRevLett.96.252301
[9] M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459(2001)
[10] G. Torrieri and I. Mushuntin, “Instability of Boost-Invariant Hydrodynamics with a QCD Inspired Bulk Viscosity,” Physical Review C, Vol. 78, No. 2, 2008, Article ID: 021901.doi:10.1103/PhysRevC.78.021901
[11] N. Dadhich, “Derivation of the Raychaudhuri Equation,” General Relativity and Quantum Cosmology, 2005.
[12] J. Natário, “Relativity and Singularities—A Short Introduction for Mathematicians,” March 2006.
[13] A. Beckwith, “Relic High Frequency Gravitational Wavesfrom the Big Bang, and How to Detect them,” AIP Conference Proceedings, Vol. 1103, 2009, pp. 571-581. doi:10.1063/1.3115567
[14] S. Mathur and B. Chowdhury, “Fractional Brane States in the Early Universe,” Classical and Quantum Gravity, Vol. 24, No. 10, 2007, pp. 2689-2720. doi:10.1088/0264-9381/24/10/014
[15] A. Beckwith, “Instanton Formation of Vacuum Energy via the Reissner-Nordstrom Geometry of a Wormhole Bridge between a Prior to Our Present Universe,” October 2007. arXiv:0710.3788
[16] S. Weinberg, “Cosmology,” Oxford University Press, Oxford, 2008
[17] G. Lifschytz, “Black Hole Thermalization Rate from Brane Antibrane Model,” 2004.
[18] A. Beckwith, F. Y. Li, et al. “Is Octonionic Quantum Gravity Relevant near the Planck Scale? If Gravity Waves Are Generated by Changes in the Geometry of the Early Universe, How Can We Measure them?” 2011.
[19] K. Becker, M. Becker and J. Schwarz, “String Thetheory and M theory, a Modern Introduction,” Cambridge University Press, Cambridge, 2007
[20] S. Carroll, “An Introduction to General Relativity Space Time and Geometry,” Addison Wesley Publishing House, San Francisco, 2004
[21] C. Foias, O. Manley, et al., Comptes Rendus de l’Académie des Sciences—Series I—Mathematics, Vol. 333, 499, 2001.
[22] R. Rosa and R. M. S. Rosa, “Turbulence Theories,” In: J.-P. Franchioise, G. Naber and T.-T. Sheung, Eds., Encyclopedia of Mathematical Physics, Vol. 2, 2006, pp. 253-261.
[23] A. Beckwith, “A New Soliton-Anti Soliton Pair Creation Rate Expression Improving Upon Zener Curve Fitting for I-E Plots,” Modern Physics Letters B, Vol. 20, No. 5, 2006, pp. 849-861. doi:10.1142/S0217984906011219
[24] A. Beckwith, “Classical and Quantum Models of Density Wave Transport, a comparative study,” PhD Dissertation, University of Houston, December 2001
[25] T. Kahniashvili, “Relic Gravitational Waves as a Test of the Early Universe,” 2007. arXiv:0705.1733[astro-ph]
[26] L. Grishkuk, “Discovering Relic Gravitational Waves in Cosmic Microwave Background Radiation,” General Relativity and John Archibald Wheeler, Vol. 367, Part 3, 2008, pp. 151-199.
[27] E. Kolb and S. Turner, “The Early Universe,” Westview Press, Chicago, 1994
[28] M. Peskin and D. Schroeder, “An Introduction to Quantum Field Theory,” Westview Press, Chicago, 1995.
[29] M. Maggiore, “Gravitational Waves, Volume 1: Theory and Experiment,” Oxford University Press, Oxford, 2008.
[30] A. Avessian, “Plancks Constant Evolution as a Cosmo- logical Evolution Test for the Early Universe,” Gravitation and Cosmology, Vol. 15, No. 1, 2009, pp. 10-12. doi:10.1134/S0202289309010034
[31] C. Hogan, “Holographic Discreteness of Inflationary Pe turbations,” 2002. arXIV astro-ph/0201020 v 2
[32] J. Camp and N. Cornish, “Gravitational Wave Astronomy,” In: B. Kayser, B. Holstein and A. Jawahery, Eds., Annual Review of Nuclear and Particle Science, Vol. 54, Menlo Park, 2004, pp. 525-577.
[33] F. Li, R. Baker, et al. “Perturbative Photon Fluxes Generated by High-Frequency Gravitational Waves and Their Physical Effects,” European Physical Journal C, Vol. 56, No. 3, 2008, pp. 407-423. doi:10.1140/epjc/s10052-008-0656-9
[34] H. B. J. Koers and P. Tinyakov, “Testing Large-Scale (An)isotropy of Ultra-High Energy Cosmic Rays,” Journal of Cosmology and Astroparticle Physics, Vol. 2009, No. 4, 2009. [arXiv:0812.0860 [astro-ph]].
[35] W. Honig, “A Minimum Photon ‘Rest Mass’—Using Planck’s Constant and Discontinuous Electromagnetic Waves,” Foundations of Physics, Vol. 4, No. 3, 1974, pp. 367-380. doi:10.1007/BF00708542
[36] S. Weinberg, “Gravitation,” Freeman, San Francisco, 1973.
[37] R. Glauber, “Coherent and Incoherent States of the Radiation Field”, Physical Review, Vol. 131, No. 6, 1963, pp. 2766-2788. doi:10.1103/PhysRev.131.2766
[38] M. Gasperini and G. Veneziano, Modern Physics Letters A, Vol. 8, 3701, 1993.
[39] K. Kieffer, “Quantum gravity,” International Series of Monographs on Physics, Oxford Science Pulications, Oxford University Press, Oxford, 2007. doi:10.1093/acprof:oso/9780199212521.001.0001
[40] T. Mohaupt. “Introduction to String Theory,” 2003. (hep- th_0207249)(78s).pdf
[41] L. H. Ford, “Gravitons and Lightcone Fluctuations,” Physical Review D, Vol. 54, No. 4, 1996, pp. 2640-2646. doi:10.1103/PhysRevD.54.2640
[42] F. Li, N. Yang, et al., “Signal Photon Flux and Background Noise in a Coupling Electromagnetic Detecting System for High Frequency Gravitational Waves,” Physical Review D, Vol. 80, No. 6, 2009, Article ID: 064013. doi:10.1103/PhysRevD.80.064013
[43] K. K. Venkatartnam and P. K. Suresh, “Density Fluctuations in the Oscillatory Phase of Nonclassical Inflaton in FRW Universe,” International Journal of Modern Physics D, Vol. 17, No. 11, 2008, pp. 1991-2005. doi:10.1142/S0218271808013662
[44] L. Grishchuk and Y. Sidorov, Classical and Quantum Gravity, Vol. 6, 1989, pp. L161-L165. doi:10.1088/0264-9381/6/9/002
[45] L Grishchuk, “Quantum Effects in Cosmology,” Classical and Quantum Gravity, Vol. 10, 1993, pp. 2449-2478. doi:10.1088/0264-9381/10/12/006
[46] J. Polchinski, “String Theory: An introduction to the Bo-Sonic String,” Cambridge University Press, Cambridge, 1999.
[47] R. Dick, “Standard Cosmology in the DGP Brane Model,” Acta Physica Polonica B, Vol. 32, No. 11, 2001, pp. 3669-3682.
[48] Berkestein, 2004.
[49] C. Rovelli, “Graviton Propagator from Background Indpendent Quantum Gravity,” Physical Review Letters, Vol. 97, No. 15, 2006, Article ID: 151301. doi:10.1103/PhysRevLett.97.151301
[50] L. Motl, 2007.
[51] J. Mielchrek, “Tensor Power Spectrum with Holonomy Corrections in LQC,” Physical Review D, Vol. 79, 2009, Article ID: 123520.
[52] D.-W. Chiu and F. Li, “Loop Quantum Cosmology with Higher Order Holonomy Corrections,” Physical Review D, Vol. 80, No. 4, 2009, Article ID: 043512.
[53] A. Ashtekar, 2006. solvaynet.pdf
[54] M. Bojowald, “Comment on ‘Quantum bounce and cos- mic recall’,” Physical Review Letters, Vol. 101, No. 20, 2008, Article ID: 209001.
[55] M. Bojowald, “Quantum Nature of Cosmological Bounces,” General Relativity and Gravitation, Vol. 40, No. 12, 2008, pp. 2659-2683. doi:10.1007/s10714-008-0645-1
[56] M. Bojowald, “Quantum nature of cosmological bounces “General Relativity and Gravitation, pp 2659-2683, Vol 40, Number 12, Dec, 2008;
[57] L. Crowell, “Quantum Fluctuations of Space Time,” World Scientific Series in Contemporary Chemical Phyics, World Scientific, Singapore, Vol. 25, 2005.
[58] P. Martin-Moruno and P. F. Gonzalez-Diaz, “Thermal radiation from Lorentzian traversable wormholes,” Physical Review D, Vol. 80, No. 16, 2009, Article ID: 024007.
[59] M. Cavaglià, “Quantum Electromagnetic Wormholes and Geometrical Description of the Electric Charge,” Physical Review D, Vol. 50, No. 8, 1994, pp. 5087-5092.
[60] L. J. Garay, “Quantum State of Wormholes and Path Integral,” Physical Review D, Vol. 44, No. 4, 1991, pp. 1059-1066. doi:10.1103/PhysRevD.44.1059
[61] A. Linde, “The New Inflationary Universe Scenario,” In: C. Gibbons, S. Hawking and S. Siklos, Eds., The Very Early Universe, Cambridge University Press, Cambridge, 1982, pp. 205-249.
[62] J. Lehners, P. McFadden, N. Turok and P. Steinhardt, “Generating Ekpyrotic Curvature Perturbations Before the Big Bang,” Physical Review D, Vol. 76, No. 10, 2007, Article ID: 103501.doi:10.1103/PhysRevD.76.103501
[63] S. Gutt, S. Waldmann, “Deformations of the Poisson Bracket on a Sympletic Manifold,” In: J. P. Frnachoise, G. L Naber and S. Tsuou, Eds., Encyclopedia of Mathematical Physics, Elsevier, Oxford, Vol. 2, 2006, p. 24. doi:10.1016/B0-12-512666-2/00366-7
[64] A. Beckwith, “Relic High Frequency Gravitational Waves from the Big Bang, and How to Detect them,” AIPConf.Proc.1103:571-581, 2009, (13)
[65] G. Fontana, “Gravitational Wave Propulsion,” In: M. El-Genk, Ed., Proceedings of (STAIF-05), AIP Conference Proceedings, Vol. 746, Melville, 2005. doi:10.1063/1.1867262
[66] D. Park, “Radiations from a Spinning Rod,” Physical Review, Vol. 99, No. 4, 1955, pp. 1324-1325. doi:10.1103/PhysRev.99.1324
[67] M. Giovannini, “A primer on the Physics of the Cosmic Microwave Background,” World Press Science, Singapore, 2008.
[68] A. D. Linde, “Inflationary Cosmology,” In: M. Lemione, J. Martin and P. Peters, Eds., Lecture Notes in Physics 738, Inflationary Cosmology, Springer Verlag, Berlin, 2008, pp. 1-54.
[69] L. Kofman, “Preheating after Inflation,” In: M. Lemoine, J. Martin and P. Peter, Eds., Lecture Notes in Physics 738, Inflationary Cosmology, Springer Verlag, Berlin, 2008, pp. 50-79.
[70] C. Kiefer, D. Polariski and A. Starobinsky, “Entropy of Gravitons Produced in the Early Universe,” Physical Review D, Vol. 62, No. 4, 2000, Article ID: 043518.
[71] C. M. Will, “The Confrontation between General Relativity and Experiment,” 2001.
[72] M. Visser, “Mass for the Graviton,” General Relativity Gravity, Vol. 30, No. 12, 1998, pp. 1717-1728. doi:10.1023/A:1026611026766
[73] A. Beckwith, “Energy Content of Graviton as a Way to Quantify both Entropy and Information Generation in the Early Universe,” Journal of Modern Physics, Vol. 2, 2011, pp. 58-61. doi:10.4236/jmp.2011.22010
[74] P. Chen, “Resonant Phton-Graviton Conversion in EM Fields: From Earth to Heaven,” 1994.
[75] T. Rothman and S. Boughn, “Can Gravitons be Detected?” Foundations of Physics, Vol. 36, No. 12, 2006, pp. 1801-1825. doi:10.1007/s10701-006-9081-9
[76] D. Samtleben, S. Staggs and B. Witnstein, “The Cosmic Microwave Background for Pedestrians, a review for Particle and Nuclear Physicists,” Annual Review of Nuclear and Particle Science, Vol. 57, 2007, pp. 245-283. doi:10.1146/annurev.nucl.54.070103.181232
[77] R. Durrer, “Cosmological Perturbation Theory,” In: E. Papantonopoulous, Ed., Physics of the Early Universe, Lecture Notes in Physics 653, Springer-Verlag, Berlin, 2004.
[78] S. Capozziello, A. Feoli, et al., “Thin Shell Quantization in Weyl Spacetime,” Physics Letters A, Vol. 273, No. 1, 2000, pp. 25-30. doi:10.1016/S0375-9601(00)00478-3

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.