An HC-PCF Fluorescence Spectrocopy for Detection of Microsphere Samples Based on Refractive Index Scaling Law
Vengalathunadakal K. Shinoj, Vadakke. M. Murukeshan
DOI: 10.4236/opj.2011.12014   PDF    HTML     3,842 Downloads   8,062 Views   Citations

Abstract

This paper illustrates an efficient fluorescence detection of micro particles using hollow-core photonic crystal fibers (HC-PCFs) by applying the refractive index (RI) scaling law. The variations in the central wavelength for different filling material indices are illustrated for most commonly available HC-PCFs that have cladding made of pure fused silica with array of air holes running along the entire length of the fiber. The proposed concept is verified by immobilizing fluorescent microsphere samples inside two HC-PCFs of different central wavelengths and the quantification of fluorescence inside the fibers is performed through spectroscopic analysis. The sensitivity has been compared for similar fiber with different dispersed media and different fibers with same dispersed medium.

Share and Cite:

Shinoj, V. and Murukeshan, V. (2011) An HC-PCF Fluorescence Spectrocopy for Detection of Microsphere Samples Based on Refractive Index Scaling Law. Optics and Photonics Journal, 1, 85-90. doi: 10.4236/opj.2011.12014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Brooks Shera, N. Seitzinger, L. Davis, R. Keller and S. Soper, “Detection of single fluorescent molecules,” Chemical Physics Letters, Vol. 174, No. 6, 1990, pp. 553-557. doi:10.1016/0009-2614(90)85485-U
[2] A. Castro, and E. Shera, “Single-Molecule Detection: Applications to Ultrasensitive Biochemical Analysis,” Applied Optics, Vol. 34, No. 18, 1995, pp. 3218-3222. doi:10.1364/AO.34.003218
[3] Y. Zhao, and Y. Liao, “Discrimination Methods and Demodulation Techniques for Fiber Bragg Grating Sensors,” Optics and Lasers in Engineering, Vol. 41, No. 1, 2004, pp. 1-18. doi:10.1016/S0143-8166(02)00117-3
[4] J. I. Peterson, and G. G. Vurek, “Fiber-Optic Sensors for Biomedical Applications,” Science, Vol. 224, No. 4645, 1984, pp. 123-127. doi:10.1126/science.6422554
[5] J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective Detection of Antibodies in Microstructured Polymer Optical Fibers,” Optics Express, Vol. 13, No. 15, 2005, pp. 5883-5889. doi:10.1364/OPEX.13.005883
[6] C. Cordeiro, M. Franco, G. Chesini, E. Barretto, R. Lwin, C. Brito Cruz and M. Large, “Microstructured-Core Optical Fibre for Evanescent Sensing Applications,” Optics Express, Vol. 14, No. 26, 2006, pp. 13056-13066. doi:10.1364/OE.14.013056
[7] A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, “Suspended-Core Holey Fiber for Evanescent-Field Sensing,” Optical Engineering, Vol. 46, No. 1, 2007, p. 010503. doi:10.1117/1.2430505
[8] M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran and C. de Sterke, “Microstructured Polymer Optical Fibre,” Optics Express, Vol. 9, No. 7, 2001, pp. 319-327. doi:10.1364/OE.9.000319
[9] P. Russell, “Review: Photonic Crystal Fibers,” Science, Vol. 299, 2003, pp. 358-362. doi:10.1126/science.1079280
[10] J. C. Knight, J. Broeng, T. A. Birks and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science, Vol. 282, No. 5393, 1998, pp. 1476-1478. doi:10.1126/science.282.5393.1476
[11] D. Mogilevtsev, T. A. Birks and P. S. J. Russell, “Group-Velocity Dispersion in Photonic Crystal Fibers,” Optics Letters, Vol. 23, No. 21, 1998, pp. 1662-1664. doi:10.1364/OL.23.001662
[12] S. Padmanabhan, V. K. Shinoj, V. M. Murukeshan and P. Padmanabhan, “Highly Sensitive Optical Detection of Specific Protein in Breast Cancer Cells Using Microstructured Fiber in Extremely Low Sample Volume,” Journal of Biomedical Optics, Vol. 15, No. 1, 2010, pp. 017005-017006. doi:10.1117/1.3302810
[13] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science Vol. 285, No. 5344, 1999, 1537. doi:10.1126/science.285.5433.1537
[14] T. Birks, D. Bird, T. Hedley, J. Pottage and P. Russell, “Scaling Laws and Vector Effects in Bandgap-Guiding Fibres,” Optics Express, Vol. 12, No. 1, 2004, pp. 69-74. doi:10.1364/OPEX.12.000069
[15] J. Joannopoulos, R. Meade and J. Winn, “Photonic Crystals,” Princeton University Press, Princeton, 1995.
[16] G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight and P. S. J. Russell, “Experimental Demonstration of the Frequency Shift of Bandgaps in Photonic Crystal Fibers Due to Refractive Index Scaling,” Optics Express, Vol. 14, No. 7, 2006, pp. 3000-3006. doi:10.1364/OE.14.003000
[17] J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sensors and Actuators B: Chemical, Vol. 128, No. 1, 2007, pp. 46-50. doi:10.1016/j.snb.2007.05.037
[18] S. H. Aref, R. Amezcua-Correac, J. P. Carvalho, O. Fraz?o, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira and J. C. Knight, “Spectral Characterization of a Photonic Bandgap Fiber for Sensing Applications,” Applied Optics, Vol. 49, No. 10, 2010, pp. 1870-1875 doi:10.1364/AO.49.001870

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.