Surfactant-Free Production of Ni-Based Nanostructures


This paper introduces a facile surfactant-free method for fabrication of different types of Ni-based nanostructures including metallic nickel nanoparticles (MNNP), nickel oxide nanoparticles (NONP) and chip-like nickel oxide nanoflakes (CNONF) by solvothermal technique at 190°C. Nickel acetyl acetonate (Ni(ac ac)2) was used as nickel precursor for both MNNP and CNONF and NiCO3●2Ni(OH)2●nH2O was utilized for NONP. Organic alcohols including 1-hexanol and benzyl alcohol were used as solvent to produce all powders. The crystallite sizes of MNNP, NONP and CNONF were determined by X-ray diffraction (XRD) to be 30, 9 and 27 nm, respectively. Electron microscopy indicated final particle sizes of 80 nm and 20 nm for MNNP and NONP, respectively and a thickness-layer less than 90 nm for CNONF. Brunauer-Emmett-Teller (BET) experiment determined a high surface area of 68 m2/gr for CNONF.

Share and Cite:

Mollamahaleh, Y. , Hosseini, D. , Mazaheri, M. and Sadrnezhaad, S. (2011) Surfactant-Free Production of Ni-Based Nanostructures. Materials Sciences and Applications, 2, 444-452. doi: 10.4236/msa.2011.25059.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] I. Djerdj, D. Arcon, Z. Jaglicic and M. Niederberger, “Nonaqueous Synthesis of Metal Oxide Nanoparticles: Short Review and Doped Titanium Dioxide as Case Study for the Preparation of Transition Metal-Doped Oxide Nanoparticles,” Journal of Solid State Chemistry, Vol. 181, No. 7, July 2008, pp. 1571-1581. doi:10.1016/j.jssc.2008.04.016
[2] L. Zhou, J. Xu, X. Li and F. Wang, “Metal Oxide Nanoparticles from Inorganic Sources via a Simple and General Method,” Materials Chemistry and Physics, Vol. 97, No. 1, May 2006, pp. 137-142. doi:10.1016/j.matchemphys.2005.07.062
[3] J. Kim, D. Kim, B. Veriansyah, J. W. Kang and J. D. Kim, “Metal Nanoparticle Synthesis Using Supercritical Alcohol,” Materials Letters, Vol. 63, No. 21, August 2009, pp. 1880-1882. doi:10.1016/j.matlet.2009.05.066
[4] S. Mourdikoudis, K. Simeonidis, A. Vilalta-Clemente, F. Tunab, I. Tsiaoussis, M. Angelakeris, et al., “Controlling the Crystal Structure of Ni Nanoparticles by the Use of Alkylamines,” The Journal of Magnetism and Magnetic Materials, Vol. 321, No. 18, September 2009, pp. 2723- 2728. doi:10.1016/j.jmmm.2009.03.076
[5] J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim, et al., “Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction,” Advanced Material, Vol. 17, No. 4, 2005, pp. 429- 434. doi:10.1002/adma.200400611
[6] S. G. Kim, Y. Terashi, A. Purwanto and K. Okuyam, “Synthesis and Film Deposition of Ni Nanoparticles for Base Metal Electrode Applications,” Colloids Surfaces A, Vol. 337, No. 1-3, April 2009, pp. 96-101. doi:10.1016/j.colsurfa.2008.12.022
[7] Y. Hattori and E. Matijevic, “Gelatin Induced Reduction of Uniform Nano-Platelets of Ni(OH)2 to Ni Metal,” Journal of Colloid and Interface Science, Vol. 335, No. 1, July 2009, pp. 50-53. doi:10.1016/j.jcis.2009.03.046
[8] H. Bi, K. C. Kou, K. Ostrikov, L. K. Yan and Z. C. Wang, “Microstructure and Electromagnetic Characteristics of Ni Nanoparticle Film Coated Carbon Microcoils,” The Journal of Alloys and Compounds, Vol. 478, No. 1-2, June 2009, pp. 796-800. doi:10.1016/j.jallcom.2008.12.053
[9] N. Pinna and M. Niederberger, “Surfactant-Free Nonaqueous Synthesis of Metal Oxide Nanostructures,” Angewandte Chemie International Edition, Vol. 47, No. 29, July 2008, pp. 5292-5304. doi:10.1002/anie.200704541
[10] G. Garnweitner and M. Niederberger, “Organic Chemistry in Inorganic Nanomaterials Synthesis,” Journal of Material Chemistry, Vol. 18, No. 11, 2008, pp. 1171-1182. doi:10.1039/b713775c
[11] M. Niederberger and G. Garnweitner, “Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles,” Chemistry: A European Journal, Vol. 12, No. 28, September2006, pp. 7282-7302. doi:10.1002/chem.200600313
[12] M. Niederberger, “Nonaqueous Sol-Gel Routes to Metal Oxide Nanoparticles,” Accounts of Chemical Research, Vol. 40, No. 9, 2007, pp. 793-800. doi:10.1021/ar600035e
[13] Y. Bahari Mollamahale, S. K. Sadrnezhaad and D. Hosseini, “NiO Nanoparticles Synthesis by Chemical Precipitation and Effect of Applied Surfactant on Distribution of Particle Size,” Nanomater, 2008, 4 pages. doi:10.1155/2008/470595
[14] B. Varghese, M. V. Reddy, Z. Yanwu, C. S. Lit, T. C. Hoong, G. V. Subba Rao, B. V. R. Chowdari, A. T. S. Wee, C. T. Lim and C. H. Sow, “Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery,” Chemistry of Material, Vol. 20, No. 10, May 2008, pp. 3360-3367. doi:10.1021/cm703512k
[15] J. Li, R. Yan, B. Xiao, D. T. Liang and D. H. Lee, “Preparation of Nano-NiO Particles and Evaluation of Their Catalytic Activity in Pyrolyzing Biomass Components,” Energy Fuels, Vol. 22, No. 1, 2008, pp. 16-23. doi:10.1021/ef700283j
[16] M. A. Shah, “A Versatile Route for the Synthesis of Nickel Oxide Nanostructures without Organics at Low Temperature,” Nanoscale Research Letters, Vol. 3, 2008, pp. 255-259. doi:10.1007/s11671-008-9147-z
[17] X. Song and L. Gao, “Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties,” The Journal of Physical Chemistry C, Vol. 112, No. 39, 2008, pp. 15299-15305. doi:10.1021/jp804921g
[18] X. Li, X. Zhang, Z. Li and Y. Qian, “Synthesis and Characteristics of NiO Nanoparticles by Thermal Decomposition of Nickel Dimethylglyoximate Rods,” Solid State Communications, Vol. 137, No. 11, 2006, pp. 581- 584. doi:10.1016/j.ssc.2006.01.031
[19] X. Wang, J. Song, L. Gao, J. Jin, H. Zheng and Z. Zhang, “Optical and Electrochemical Properties of Nanosized NiO via Thermal Decomposition of Nickel Oxalate Nanofibres,” Nanotechnology, Vol. 16, No. 1, 2005, pp. 37-39. doi:10.1088/0957-4484/16/1/009
[20] P. Palanisamy and A. M. Raichur, “Synthesis of Spherical NiO Nanoparticles through a Novel Biosurfactant Mediated Emulsion Technique,” Materials Science and Engineering: C, Vol. 29, No. 1, January 2009, pp. 199-204. doi:10.1016/j.msec.2008.06.008
[21] C. Li, Y. Liu, L. Li, Z. Du, S. Xu, M. Zhang, X. Yin and T. Wang, “A Novel Amperometric Biosensor Based on NiO Hollow Nanospheres for Biosensing Glucose,” Talanta, Vol. 77, No. 1, October 2008, pp. 455-459. doi:10.1016/j.talanta.2008.06.048
[22] A. B. Moghaddam, M. R. Ganjali, A. A. Saboury, A. A. Moosavi-Movahedi and P. Norouzi, “Electrodeposition of Nickel Oxide Nanoparticles on Glassy Carbon Surfaces: Application to the Direct Electron Transfer of Tyrosinase,” Journal of Applied Electrochemistry, Vol. 38, No. 9, 2008, pp. 1233-1239. doi:10.1007/s10800-008-9541-3
[23] A. Salimi, E. Sharifi, A. Noorbakhsh and S. Soltanian, “Immobilization of Glucose Oxidase on Electrodeposited Nickel Oxide Nanoparticles: Direct Electron Transfer and Electrocatalytic Activity,” Biosens and Bioelectron, Vol. 22, No. 12, June 2007, pp. 3146-3153. doi:10.1016/j.bios.2007.02.002
[24] A. Aslani, A. Bazmandegan-Shamili and K. Kaviani, “Sonochemical Synthesis, Characterization and Optical Analysis of Some Metal Oxide Nanoparticles (MO-NP; M=Ni, Zn and Mn),” Physica B, Vol. 405, No. 18, 2008, pp. 3972-3976. doi:10.1016/j.physb.2010.06.041
[25] R. N. Jana, Y. Chen and X. Peng, “Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach,” Chemistry of materials, Vol. 16, No. 20, 2004, pp. 3931-3935. doi:10.1021/cm049221k
[26] G. Cao, “Nanostructures and Nanomaterials,” Imperial College, London, 2003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.